Mosaic is an open source multiplatform (osx, linux, windows) live coding and visual programming application based on openFrameworks.
This paper describes the initial ideas that have driven its development, its internal structure and the basic libraries it is comprised of, the
levels of complexity that can be developed with Mosaic, (from beginner, to very complex developments) and the main contributions to the

field of live coding/visual programming and also to the field of creative coding teaching/learning.

We present the development framework, which integrates two paradigms: visual programming (diagram) and live coding (scripting), to show its features and
potential, most significantly, the learning feedback generated through to the relationships it establishes between human-machine. In other words, amplifying
access routes to that relationship/interrelation promotes augmented-thinking through feedback.

SSSSSSSSSSSSS

Mosaic is a visual programming and live coding environment, based on openFrameworks. In
the data flow environment, the possibility of programming in different scripting languages
(Lua, Python, BASH, GLSL) is inserted through specific objects that can be activated
simultaneously. This hybridization depicts a fertile two-way cross-pollination situation that

amplifies the human-machine communication, providing something similar as the benetfits
introduced by the Dual Coding Theory (Paivio 1990, 57).

The project, at alpha stage right now, is being developed through a modular structure of
independent ofxAddons. For example, ofxVisualProgramming is the central code for visual
programming, and is kept isolated to encourage contributions, simplify error correction and
improve the quality of the code, but most of all to encourage a collaborative
community-driven development of Mosaic project.

Live Coding
INTERACTIVE
PROGRAMMING

Visual DataFlow
Programming

Embedded
Scripting
Interpreter

PYTHON

LUA

HOT-SWAPPING

ofxPython

SWIG
(bindings)

BLOCKS
(objects)

OF

openFrameworks
0.10.0

- To submit a new development application in the field of creative programming, hybridizing
live-coding and visual-programming paradigms.

- To facilitate learning and use of programming environments, promoting a human-machine
interrelation that encourages augmented-thought through the learning feedback that this
application provides.

- To make the software and the related documentation more widely known to promote a
community-driven collaborative development.

C C @ A

2} arawy
of.setColor(0,0,0,12)
of.drawRectangle (0,0,

of.pushMatrix()

of.translate(Ik
of.rotateXDeg(_mosaic..data_t
of.rotateYDeg(_m ¢ data_tad
of.lc'qtmeZDe;;(o /setElapsedTihe

STt)Zn ?gﬂe

of.setColor(255)
of.noFill()
of.setLineWidth(3)
of.drawBox(300)

light:disable()

of.popMatrix()

The general objective of visual programming languages is to make programming more
accessible for beginners (Medlock-Walton 2014, 545) (Tanimoto 2013), and to provide
advanced users with added support at three different levels:

Syntax, visual programming languages use blocks and a flow communication system (cords),
which reduces and/or completely removes the possibility of syntactic errors (a cord cannot
connect where it does not touch, the environment prevents the error).

Visual semantics, it is plausible to consider the inclusion of visual compression mechanisms
embedded in the blocks themselves (visual feedback of comprehension), or in other words,
documentation of the language hybridized in the language itself.

Pragmatic, the structure of visual programming allows the generation of case studies to
analyze the interaction systems internal to the process (internal data flow/reaction/interaction)
and related to the result (input -> output). Amplification of the relationship/interrelation
between human-machine, boosting augmented-thought through feedback.

Today's visual programming environments also incorporate the dataflow programming
concept, which translates into adding real-time live-coding capabilities, or in this case
live-visual-coding, a programming environment that allows auto-parallelization (Johnston,
Hanna, and Millar 2004), a programming concept that increases opportunities for shared
development and multiple levels of learning (fragmentation/de-fragmentation of a program in
real time).

The fundamental elements of an environment with these characteristics can be derived from
the basic concepts that constitute the formulation of Reactive Functional Programming of
Continuous Semantics (Elliott and Hudak 1997), which aims to abstract all the operational
details not important for the programming itself (simplification of interface/use).

The key points of this formulation are related to the previously introduced dataflow
programming, the dynamic modeling of values in real-time (dataflow, the cords system that
we call signal transmission system), and to the possibility of controlling/programming reactive
events that alter the system structure (program -> code -> visual process).

Mosaic integrates live-coding (Lua, Python, GLSL, Interactive Programming without
Hot-swapping) with visual programming and data flow in real time (Fully Interactive
programming), combining all its elements to reinforce its native structure of
auto-parallelization, leveling out the layers of complexity and equalizing the possible user
levels to simplify the approach to collaborative processes.

We have introduced a new application hybridizing a live coding environment with visual
programming, based on openFrameworks. We have explained the characteristics of its design
based on independent articulated cores and the contributions it offers to the field of creative
programming, teaching and self-learning. We have presented the philosophical and
computer concepts on which the concept and the technology of the project is built.

Future work will involve the implementation of a distributed network communication system
to work remotely on the same projects files in a collaborative way, as well as creating an
on-line community to foster collaboration with the project.

