
Reflections On Learning Live Coding As A Musician

References

Introduction

May Cheung
LIVECODE.NYC

After spending many years as a musician from a jazz performance background, I was excited
to try a new method of creating music. Having been active in the live code community in New York
(livecode.nyc) for almost a year, it became apparent to me that my process in creating musical
structure, harmonic ideas and melodic ideas were different than live coders who came from a
programming background. Using the live code environment Sonic Pi (based on the programming
language Ruby, created by Dr. Sam Aaron) as a reference, this poster presents the parallels and
differences between the experience of live coding music versus the experience of performing and
playing music. In rare occasions, the dichotomy of the two worlds converge as we present the work
of Anne Veinberg, a renowned classically-trained pianist who uses a MIDI keyboard as an interface
to code through a program created by composer-performer Felipe Ignacio Noriega.

Bertram, Fabia. 2014. “Learning Elementary Musical Programming with Extempore: Translating Arvo Pärt’s Fratres into Live Code Snippets.”
University of Cologne, Germany.

McLean, Christopher Alex. 2011. “Artist-Programmers and Programming Languages for the Arts.” PhD diss., University of London.

Parallels
Through my own experiences in live coding and performing music, I discovered two major

similarities between the two:

1. The act of associating meaning to symbols or syntax
The figures below illustrate the associations I make when coding in Sonic Pi. These “live loops”

are like bars of music enclosed with repeat signs:

 live_loop :letsgo do
 use_synth :dpulse
 play :a3
 sleep 3
 play :c3
 sleep 3
 play :e3
 sleep 3
end

Translates to:

These translations from code to music, or vice-versa, make the process of live coding easier by
association as a musician. More often than not, I hear a rhythm or melody before I code it.

2. Method of preparation
I use the same method to prepare for a live code show or a musical performance. I practice, I

memorize and I test. If I am about to do a live code show, I practice executing my whole Sonic Pi set at
least five times over several days leading to the performance from memory. Then on the day of the
show, I test myself to see if I have retained the process and flow of my set, starting from a blank
“buffer”. Once I have the code memorized, I take calculated risks and improvise from there. My
training as a musician has taught me that the act of practicing is important, especially when it comes
to learning new languages: spoken, written, read or coded. I assume that once I attain fluency in
Ruby, which is the language that Sonic Pi is based off of, I would not have the need to rely on memory
to regurgitate a live set on a blank slate. As Fabia Bertram notes, in her paper, ‘Learning Elementary
Musical Programming with Extempore: Translating Arvo Pärt's Fratres Into Live Code Snippets’, “the
student will finally have a coding performance that can stand on its own while having practiced or
improved, or even acquired new programming skills.” (Bertram 2014, 3). I must note that not all
coders perform this way. Many live coders have their code in order and ready to go before going up on
stage. They can change numbers, variables, or comment out sections as they go along during their
performance which can prove to be helpful and less stressful.

Conclusion
The possibilities and sheer accuracy of what live coding brings to the world of music is necessary

and important for the evolution of music itself. Live coding as a musician enriches one’s experience of
creating music in that the possibilities are infinite and that it helps to further one’s creative potential. A
musician’s prior knowledge makes learning live coding easier with the discipline and structural
understanding involved in both coding and performing. With this prior knowledge, we find that the
structures between code and musical notation are similar as well as the method that comes with
preparing for a show. On the contrary, we also find that music notation gives way to interpretation,
whereas code acts as specification; the act of live coding requires little if any physical movement
between instruments; musical structure and organization of ideas are developed differently; calculated
randomization makes the impossible (by musical notation standards), possible. Also, the disparity in
artist-audience relationships between live code settings and music performance is apparent as live code
performances lack human interactions. Finally, we find the union of the live code and music
performance world made possible by musicians such as Anne Veinberg as she combines piano
performance with code, furthering the future potential of music technology and music creation.

Convergences
Broadly speaking, the “cross-pollination” between musicians and live coders rarely happens.

However, after attending my first ICLC conference in Morelia in 2017, I met other musicians who were
immersed in the world of live coding, namely, classically-trained pianist Anne Veinberg, who presented
her piece CodeKlavier in which she combines live coding with piano performance. In her performances,
she uses an 88-key MIDI keyboard as an interface to send commands to a program that coder and
composer Ignacio Noriega created. Veinberg, who obtained her Bachelor in Music from the University of
Melbourne and Master in music at the Conservatory of Amsterdam, plays the piano in various capacities
- from classical performances to live coding music, sending commands to her laptop while playing
specific sequences or singular notes. With an acoustic-MIDI piano, specifically a Yamaha Disklavier,
Veinberg plays a series of notes that translates into code through a program created by fellow live coder
and composer Felipe Ignacio Noriega. For example, if she plays this passage on the piano:

the word “hello” would appear quickly on the line of code on the projector screen. The result is
astounding, as the audience can see the code being “typed” by a piano - not the conventional way of
coding as one would expect.

Differences
1. Visual differences

Visually, code is expressed abstractly by using the modern Roman alphabet, numbers and
keyboard symbols. Written music, however, has its own hierarchical structure by using notes, bar
lines, symbols and numbers. In live coding, one must “think in the language” so to speak. In
Sonic Pi specifically, there are two ways to code notes: using MIDI note numbers (61 means C#,
for example) or by scientific designation (A2, A3 for example). The following excerpt illustrates
these visual differences, which result in the same rhythmic pattern:

live_loop :clap do
 sample :tabla_ke1
 sleep 0.25
 2.times do
 sample :tabla_ke1
 sleep 0.125
 sample :tabla_ke1
 sleep 0.25
 end
 2.times do
 sample :tabla_tas1
 sleep 0.5
 end
end

2. Multitasking
One can “play” multiple instruments at the same time without physically moving towards each
respective instrument on stage. One can change instruments at the stroke of a few keys. Contrast
this to a live music show gig where a truckload of instruments would have to be driven to a venue.
Also, from a mixing standpoint, one can also manipulate the reverb (“with_fx :reverb”) in real
time whereas a mixing engineer would be in charge of the overall sound using a soundboard at a
live music show.

live_loop :ok do
 use_synth :tri
 with_fx :reverb, mix: 0.6, room: 0.7 do
 use_synth_defaults amp: 0.75, attack: 0.4, decay: 0.25, sustain: 0.6, release: 0.2
 play choose([:a6, :g6, :c6, :e6, :d6, :b6])
 sleep 3
 end

end

Live coding allows for multi-track experimentation whereas songwriting in its most traditionally
western definition is usually a one-dimensional experience. Even if we compare a live coding
session to using Garageband, for example, we would not be able to randomize notes or pan left to
right automatically. Also, coding encourages us to think of music in a linear way with the use of
formal, artificial languages - artificial in that they are constructed by individuals, as opposed to
stemming from an organic cultural process that comes as natural languages do (McLean 2011, 17)

3. Practical application
I discovered the ease of coding rhythms in Sonic Pi versus writing them on paper, practicing
and executing them. I felt more inspired to discover world rhythms and test them out using code.
For example:

s = 0.125

live_loop :claveone do
 sample :bd_tek
 sleep 4 * s

end

live_loop :clavetwo do
 sleep 3 * s
 sample :sn_zome
 sleep 3 * s
 sample :sn_zome
 sleep 2 * s

end

4. Artist-Audience relationships
A look into Artist-audience relationships between live coding and performing music reveal that
human connection is lost in Algorave settings. there is hardly any introduction, eye contact or
human connection between the artist and the audience. Simply, the live code artist gets on stage,
plugs an HDMI cable into their laptop, opens it up, finds their code, and presses a button to run
their code. After setup and initiation of the code, the audience gazes at the projected code while
heavy drum samples or noise blasts away through sub woofers. Since live coding sets last
anywhere between 15-40 minutes, the audience is subjected to a longer performance before
applauding (the irony is that this is also the case in classical music concerts) which therefore
demands a longer attention span from the audience. In a conventional pop or singer-songwriter
set, songs are typically 2-5 minutes, maximum. Less attention span is required from the audience
and there is more respite between songs for both the performer and audience member. The
human connection in conventional performances are more prevalent and therefore, could serve
as inspiration to the live code music community even though the medium live coders use are
artificial languages. As TidalCycles creator Alex McLean states “Computers give us privileged
access to the digital realm, but we must not lose sight of the analogue, because humans
experience and interact with the world as an amalgam of both.” (McLean 2011, 18)

ADSR

Translates to:

TYPE OF
SYNTH REVERB MIX

CHOSEN NOTES TO RANDOMIZE
DURATION OF NOTE + REST

This is a Reggaeton beat; “claveone” is a basic
four-on-the-floor bass drum pattern. “clavetwo” is the
clave pattern that juxtaposes the bass drum with a
3+3+2 rhythm, which is also called a “tresillo” rhythm,
stemming from Caribbean roots. Imagine other world
beats one could replicate: Hungarian, Gamelan, Indian
tabla beats, for example.

