
Tweaking Parameters, Charting Perceptual
Spaces

Iván Paz Sam Roig Torrubiano
SEMIMUTICAS / Universitat Politècnica

de Catalunya
ivanpaz@cs.upc.edu

l’ull cec
sam@lullcec.org

ABSTRACT

Live coding builds and conducts the sound by real-time intervention of parametric
devices (such as synthesizers). Coding a piece on-the-fly requires to bridge the
cognitive gap associated with devices’ huge parameter spaces and the possible
nonlinear sound variation built-in within them. A possible approach is to have some
preselected parameter combinations of which the aural result is known, as a starting
point for the performance. However, collecting/memorizing many combinations is time
consuming, and using only a few could result in monotony. Therefore, it is convenient
to develop models that help to reduce devices’ operational complexity with the aim of
easing certain musical tasks, such as the automatic creation of variations. Here, a rule-
based approach that models the relationships among combinations of parameter
values and perceptual categories assigned to them is described. The extracted rules
can be used on-the-fly either to simply reproduce the labeled parameter combinations
(by calling them by their class as a set of presets), or to obtain new unheard
combinations that the model predicts to be consistent with a selected category. The
rules are human-readable and describe how parameter combinations relate to
perceptual categories. Concrete examples using the system to select material and
create the structure of two pieces are presented and discussed.

1. INTRODUCTION

Live coding (Collins et al, 2003; Magnusson 2015; Wang and Cook 2004) intervenes
parametric devices to create music and sound (Brown and Sorensen 2009; Rohrhuber
and de Campo 2009). By tweaking parameters, the coder explores, categorizes, and
selects the appropriate combinations for the different musical contexts. Thus, a piece
can be seen as the succession of combinations that creates spatial and temporal
structures. Coding a piece on-the-fly requires guiding the sound by changing the
parameter settings. This imposes cognitive challenges due to the huge size of devices’
parameter spaces, and to the possibility of non-linear sound variation built-in within
them. Therefore, it is normal to have some preselected parameter combinations, of
which the aural result is known, as a starting point from which to explore during the
performance. These combinations chart the parameter space into labeled perceptual
categories. However, when only a few combinations are used, the performance can
quickly become repetitive and boring for a listener, and again, remembering many
combinations imposes practical challenges. This contribution proposes the use of rule
learning as a tool to handle this problem.

To clarify what perceptual categories are, consider a system with two variable-
frequency oscillators. A possible category would contain all the parameter combinations
producing a consonant output (in acoustics a sound with harmonic partials), and
another category could be sound with “chaotic” quality. Keep in mind that the
perceptual categories are freely defined and assigned by the user. Some issues related
with an inconsistent selection of the material are discussed in the conclusions.

mailto:ivanpaz@cs.upc.edu

It is by means of an aural exploration of the combinations of parameter values that the
system's capabilities are learned, and the selection and perceptual categorization of
the musical material are performed. This being such a common activity, it seems
logical to develop models to aid in reducing the operational complexity of the
generators and facilitating certain musical tasks, such as the automatic creation of
variations within a part of a piece.

It is worthy to say that there have been excellent examples of methodologies for
finding sets of parameters that successfully produce entities with specific perceptual
properties. For example, Dahlstedt (2001) and Collins (2002a; 2002b) applied
interactive evolution (Dawkins 1986), which uses human evaluation as the fitness
function of a genetic algorithm, for system parameter optimization. In Dahlstedt (2001),
this technique was applied to sound synthesis and pattern generation tasks, while in
Collins (2002a; 2002b), it was used for searching successful sets of arguments
controlling algorithmic routines for audio cut procedures.

This work is inspired by these methodologies, and further focuses on creating models of
the information that is produced during the aural exploration process (parameter
combinations) intended for the following objectives:

1. To provide a structured and interpretable representation of the relationships among
parameter values and perceptual categories.

2. To reduce the cognitive and operational complexity of the systems by providing a
way to generalize a list of “presets” into a set of rules describing each perceptual
category.

3. To extend the compositional capacities by suggesting new unheard (unexplored)
parameter combinations that the system predicts to be consistent with a given
perceptual category.

An early version of the algorithms described here can be found in Paz et al. (2017).
They create rule models of the patterns expressing the relationships among parameter
values and categories. Rule models, in contrast with subsymbolic approaches (like
neural net classifiers), are human readable and yield interpretable information, which
makes them especially attractive for applications in contexts such as live coding, in
which the greater the understanding of the system, the better the user possibilities for
real-time interaction. Furthermore, it is possible to extend the rule model to unexplored
regions of the space expected to be consistent with the selected perceptual categories.
The present manuscript describes the current version of the algorithm presented at Paz
et al. (2017) providing examples of how the different models have been used. The rest
of the manuscript is structured as follows: section 2 introduces the rule extraction
algorithms (Rulex and IntRulex), section 3 presents applications in two concrete
examples, and finally, section 4 discusses the results and possible further work.

2. RULEX AND INT-RULEX ALGORITHMS

2.1 Rulex Algorithm: Structuring Data through Patterns

The data is captured through an auditory exploration, in which arbitrary perceptual
categories are sought and selected. During the exploration, the system parameters are
tweaked in turn, until the user decides to store the current combination of parameter
values into one of the existing categories (or classes) or into a newly-defined one. An
input datum is named a “preset” evoking the way synthesizer configurations are
named. Each one is saved as a a list containing the set of parameter values and its
associated category.

The only parameter of the Rulex algorithm is the “distance factor” d. It indicates the
maximum distance between two combinations of the same category for them to be
grouped into a new rule. In this contribution the Hamming distance (number of
parameter by parameter differences) was used. In the examples presented here “d”
was set equal to 1. Current research is using greater distance factors (and other
distance functions).

The Rulex algorithm takes as input a set of “presets”. Then, it searches iteratively for
patterns and groups the data among which a pattern is found. Two or more data of the
same category exhibit a pattern if they are “located” at a distance factor “d” from each
other. The grouped presets are represented by structures called “Strict Rules”. The
output of the algorithm is a set of Strict Rules. Next, both concepts are defined.

2.1.1 Preset
A preset is a labeled parameter combination. It is represented in a list in which the first
n-1 elements are parameter values and the entry n contains the perceptual category
(or class) associated with the parameter combination.
preset = x1, x2,. . . , xN-1, xN

2.1.2 Strict rule
Is a labeled list in which the initial n-1 entries contain sets (whose elements are
parameter values), and the entry n contains a perceptual category. It satisfies that all
the combinations formed by taking one element from each set, belong to the
perceptual category of the rule.
rule = {x1}, {x2}, . . . ,{xN-1}, xN

The rulex pseudocode is shown below. The main functions appear in bold font and are
described below.

rulex(set of presets P, set of rules R, distance factor):
if R == empty set:

transform preset_into_rule(first preset) and move it to R
for preset in P:

rule1 = transform preset_into_rule(preset)
for rule2 in R:

if pattern_found(rule1, rule2):
create_rule and add newRule to R

add rule1 to R
delete redundant rules from R
return R

2.2Functions

1. preset_into_rule
The preset_into_rule function takes a preset and returns a rule in which the first n-1
entries have sets with a single value, corresponding with the respective preset
parameter value. For example:
preset = x1, x2,. . . , xN-1, xN

preset_into_rule(preset) = {x1}, {x2}, . . . ,{xN-1}, xN

2. pattern_found
Let set1 and set2 be the sets located at the jth entry of rule1 and rule2, where 0 ≤ j ≤
n-1. Note that 0 is the first entry of the rules. Let difference count the number of times
set1 ≠ set2.

The pattern_found function takes two rules as input and checks whether or not they
satisfy the following conditions:
 class rule1 == class rule2
 difference ≤ distance factor = 1
The pattern_found_function returns an array with three entries:
 pattern: True, in case both conditions are satisfy. False, otherwise.
 unions: A list containing for each j set1 ∪ set2
 indexes: A list of the j indexes for which set1 ≠ set2.

3. create_rule
This function receives the current rule (rule1) being compared and the output of the
pattern_found function. As a pattern has been found, a new rule is created. It is formed
with the rule1 by overwriting the entries contained at the array of indexes, returned by
the pattern_found function, with the unions of the sets of the corresponding entries in
rule1 and rule2. The pseudocode is shown below:

create_rule(rule1, unions, indexes):
rule = rule1
for index in indexes:

rule[index] = unions[index]
return rule

4. delete_redundant_rules
This function searches in R for those rules that are “contained” in others. rule1 is
contained in rule2 if the following conditions are satisfied:
1. class rule1 == class rule2
2. ∀ j rule1[j] is subset of rule2[j]
When a rule1 is contained in a rule2, rule1 is eliminated from R.

As a simple example, consider the dataset shown at the top of Table 1. The rules
extracted by the Rulex algorithm are shown at the bottom.

Preset Parameter 1 Parameter 2 category

1 1 2 a

2 1 4 a

3 5 2 a

4 5 4 a

5 2 1 b

6 2 3 b

7 4 1 b

8 4 3 b

Rule{1,2,3,4} {1,5} {2,4} a

Rule{5,6,7,8} {2,4} {1,3} b

Table 1. Rulex applied to a set of 8 presets. The extracted rules are shown at the bottom
of the table. The sub-indexes indicate the instances contained at each rule.

2.3IntRulex: from Points to Intervals

The Rulex algorithm produces a data representation structured by patterns. However,
although they are interpretable structures, the Strict Rules represent only points in the
space (those formed by taking one element from each set). Therefore, an extension of

the coverage of the model for the rules to be able of “guessing” unexplored parameter
combinations consistent with their perceptual categories is desirable. This is the
function of the IntRulex algorithm. It starts from the rules created by the Rulex and
extends its validity from points to intervals in the space. For that, it replaces the sets
located at the n-1 parameters of the Strict Rules, by the intervals formed between their
minimum and maximum values. By using a heuristic of maximum volume the algorithm
then solves the contradictions, i.e., regions assigned by the model to more than one
category, that can be created during this process. Next an example is presented.

2.3.1 Interval Rules Example
To provide insight of how the IntRulex works, consider the following set of Strict Rules:

[{2}, {3}, b, 1], [{1, 5}, {2, 4}, a, 1]

As said, the algorithm begins by replacing the sets located at each of the n-1
parameters by the intervals formed between their minimum and maximum values.

[[2], [3], b, 1], [[1, 5], [2, 4], a, 1]

These rules assign to their corresponding category, all combinations formed by taking
one value from each interval. In this case a contradiction is created between the valid
combinations [2,3,b] and [2,3,a] constructed with the first and second rule respectively.
To solve the contradiction, the algorithm proceeds as follows: Note that to solve a
contradiction it is sufficient to modify the interval in only one of the parameters. In the
example, the contradiction among the rules disappears in any of the following cases:

[[2], [3], b, 1], [[1], [2, 4], a, 1], [[5], [2, 4], a, 1]

[[2], [3], b, 1], [[1, 5], [2], a, 1], [[1, 5], [4], a, 1]

To select which parameter to “break” a criteria of “maximum volume” is taken, i.e., the
set of rules covering the largest space is selected (although other heuristics can be
implemented). In the example the second set of rules is selected. The resulting rules
are called “Interval Rules”. For further references of this process the reader is referred
to Paz et al. (2017). Figures 1 and 2 shown the original Interval Rules with the two
possible partitions respectively.

Figure 1. Original Interval Rules [[2], [3], b, 1], [[1, 5], [2, 4], a, 1] created by the
IntRulex. It can be seen that a contradiction exists.

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Interval rules

PARAMETER 1

PA
R

AM
ET

ER
 2

●

●

●

●

Figure 2. Possible sets of rules that eliminate the contradiction. As a heuristic of
maximum volume is used, the second set of rules is selected.

3.EXAMPLES: CREATING STRUCTURE FROM PERCEPTUAL CATEGORIES

In this part two examples of how the Rulex and IntRulex algorithms can be used for the
specific tasks of selecting aural material and automating its generation during sections
of pieces is presented. The sections are actually defined through the evolution of the
perceptual categories, so through perceptual categories selection and labeling, the
structural building blocks are also created. The pieces have been lived coded by using
the rules to automate the selection of the material for each part, giving the coder the
possibility to manipulate in the meanwhile, for example, the signal processing. User
tests (for the validation of the rules) conducted with students of the Real Time
Interaction Class of the Master's Degree in Sound and Music Computing of the Pompeu
Fabra University (winter term of 2016-2017), as well as with computer music
composers and audio technology developers can be found in Paz et al. (2017). The
examples presented here correspond to the pieces “En Casa” and “Visions of Space” by
Iván Paz, which are available at Bohemian drips (2017a; 2017b). These examples were
selected since they use Strict and Interval Rules respectively. The Strict Rules are
useful for systems in which perceived categories change abruptly when moving away
from the classified point. In contrast, when the changes in the perceptual categories
are smooth in response to changes in the system parameters, the system is a good
candidate for Interval Rules, which generates more variability.

3.1 Example One: En Casa

For “En Casa”, the following SuperCollider (Wilson et al., 2011) node definition (Ndef)
was used:

Ndef(\EnCasa, {
arg freq1 = 50, freq2 = 100, amp = 0.2;
var sig;
sig = Mix.ar(Saw.ar([freq1, freq1-1, freq2, freq2 + 1], amp));
sig = sig + Impulse.ar(20, amp/4);
sig = FreeVerb.ar(sig, 0.33,0.5,0.5,1) * amp;
sig = Limiter.ar(sig,1);

});

0 1 2 3 4 5 6

0
1

2
3

4
5

6
Partition 1

PARAMETER 1

PA
R

AM
ET

ER
 2

●

●

●

●

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Partition 2

PARAMETER 1

PA
R

AM
ET

ER
 2

●

●

●

●

The system parameters are the frequencies (freq1 and freq2 in Hz) and the amplitude
(amp). They control the frequencies and amplitudes of the four sawtooth generators.
Both frequencies were restricted to the interval [0, 400] and the amplitude took values
in [0,1]. To select the data a geometric interface (Paz, 2016) was used. For the
selection of material, freq2 was freely tweaked until select 119.563484Hz (for no
particular reason but its sound). Then, freq1 was tweaked and all the frequencies in the
interval [0, 120.930231] producing “interesting intervals” were searched and labeled
with “category 1”. The data and the extracted Strict Rule for this category are shown at
Table 2 at the top and bottom.

preset freq1 freq2 amp category

1 96.744186 119.563484 0.807776 category 1

2 50.232559 119.563484 0.807776 category 1

3 117.209303 119.563484 0.807776 category 1

4 72.558141 119.563484 0.807776 category 1

5 120.930231 119.563484 0.807776 category 1

6 39.069769 119.563484 0.807776 category 1

rule{1,2,3,4,5,6} {96.744186, 50.232559,
117.209303, 72.558141,
120.930231, 39.069769}

{119.563484} {0.807776} category 1

Table 2. Rulex applied to a set of 6 presets. The extracted rule is shown at the bottom of
the table.

Then, freq1 was tweaked until 178.604650Hz was selected. After that, freq2 was
tweaked in the interval [119.563484, 178.604650] and all frequencies producing an
interesting interval with freq were selected and categorized as “category 2”. The data
is shown in Table 3. Note that also 179.561090 was selected.

preset freq1 freq2 amp category

7 178.604650 119.563484 0.807776 category 2

8 178.604650 135.675585 0.807776 category 2

9 178.604650 150.674987 0.807776 category 2

10 178.604650 168.215823 0.807776 category 2

11 178.604650 179.561090 0.807776 category 2

12 178.604650 144.728661 0.807776 category 2

Table 3. Presets captured for the second category.

The process was repeated for the four categories that formed the structure of the
piece. Note that in Tables 2 and 3 intervals like the unison (freq1=120.930231,
freq2=119.563484 and freq1 = 178.604650, freq2 = 179.561090 for categories 1 and
2 respectively), and the perfect fifth (freq1=178.604650, freq2=119.563484 for
category 2) are present in the data with small variations consequence of the beats.

3.2 Example Two: Visions of Space

The Ndef used for the second example is shown below. Because the synthesis is
somehow messy, it leads to a rather unintuitive perceptual output but we can still make

sense of the system and chart its parametric space into meaningful categories by
labeling.

Ndef(\visions,{
 arg freq, freq1, freq2, numharm, amp;
 var sig;
 sig = Blip.ar(freq, numharm) * amp;
 sig = sig + Blip.ar([FSinOsc.kr(freq * 2),
 freq + 1, freq/2, freq -1] , numharm * 1.4) !2 * amp;
 sig = sig + Saw.ar([freq1, freq1 - 1, freq1 + 3], amp/9);
 sig = RLPF.ar(sig, SinOsc.kr([0.1, 2], 0, [1700,480], [4000,700,5000])/[20.51,20],
 SinOsc.ar(0.1,1.5*pi) + 1.05);
 sig = FreeVerb.ar(sig, SinOsc.kr(freq2),0.8, 0.5, 1) !2;
 sig = Limiter.ar(sig,1);
});

In this example, three perceptual categories were chosen for the structure of the piece.
They were selected to produced an increase in the “impression of chaos” while going
from category 1 to 3. The selection was performed by tweaking one parameter at time
to favor the formation of rules. The system components are band-limited impulse
generators (“Blip”), band-limited sawtooths (“Saw”), resonant low-pass filters (“RLPF”),
a reverb effect (“FreeVerb”), a sinusoidal oscillator (“SinOsc”), and an efficient sine
wave generator based on a ringing filter (“FSinOsc”). For the components
documentation the reader is referred to (SuperCollider Help). The system’s parameters
are: “numharm” (number of upper harmonics added to the fundamental frequencies of
the Blips), “freq”, “freq1”, and “freq2” (fundamental frequencies of the Blip and Saw)
and “amplitude” (amplitude level of the different components). Table 4 shows the
extracted Strict and Interval Rules for the first category.

freq freq1 freq2 numharm amp category

Strict Rules

{242.000009} {90.636051, 121.821141,
161.278355, 214.226604,
194.188201, 125.672603}

{0} {50} {1.7} chaos 1

{208.930221,
168.511626,
254.860476,
192.395351,
148.302328}

{125.672603} {0} {50} {1.7} chaos 1

Interval Rules

[242.000009] [90.636051, 214.226604] [0] [50] [1.7] chaos 1

[148.302328,
254.860476]

[125.672603] [0] [50] [1.7] chaos 1

Table 4. Strict Rules (top) and Interval Rules (bottom) created with the data captured for
the perceptual category “chaos 1”.

In a mathematical sense, the perceptual categories selected in this example form
continuous convex spaces in the dimension of the selected parameters, so Interval
Rules can be used as a model of the perceptual spaces with the added advantage of

producing more variability within the categories when it is used to generate new
material.

4.DISCUSSION AND FURTHER WORK

The presented algorithms provide structured representations of the implicit
relationships among parameter settings and specific perceptual categories from labeled
data collected during an auditory exploration of a parametric musical system. The
produced models can be used to address specific musical tasks. In the examples
presented, they are used to to select material and to create musical structure by
defining the different parts of two musical pieces. The algorithms were designed to
allow different levels of generalization, optionally including unclassified combinations.
This approach allows working with architectures in which the changes in the aural
perception in response to changes in the parameter values range from smooth to
rough. If the perceptual category selected varies a lot in response to small changes in
the parameter values, as is the case in the first example, the Strict Rules can be used.
If small changes in the selected perceptual category occur due to changes in parameter
values, the Interval Rules offer more variability, a more compact model, and the
possibility of creating new material without stepping out of the selected categories. The
created models can be used as the starting point to more general models. For example,
an extension for the IntRulex algorithm that connects the created intervals by using
trapezoidal fuzzy membership functions covering all the observed space is presented in
Paz et al. (2017).
A possible extension for the exploration process (in which the data is captured) would
be to provide facilities for the user to perform a guided exploration of the space.
Needless to say, it is essential for the proper functioning of the system, that the user is
consistent in the selection of the combinations placed at each category. Therefore,
another possible extension would be to provide the user with an informed mechanism
to audit the “outliers” of each perceptual class, in order to review and further refine the
inner consistency of each category.

REFERENCES

Bohemian drips. 2017a. Retrieved from https://bohemiandrips.bandcamp.com/track/b2-en-casa

Bohemian drips. 2017b. Retrieved from https://bohemiandrips.bandcamp.com/track/b1-visions-
of-space

Brown, A.R., Sorensen, A., 2009. Interacting with Generative Music through Live Coding.
Contemp. Music Rev. 28, 17–29.

Collins, N., 2002a. Experiments with a new customisable interactive evolution framework.
Organised Sound 7, 267.

Collins, N., 2002b. Interactive evolution of breakbeat cut sequences. Proc. Cybersonics .

Collins, N., McLean, A., Rohrhuber, J., Ward, A., 2003. Live coding in laptop performance.
Organised sound 8, 321.

Dahlstedt, P., 2001. Creating and Exploring Huge Parameter Spaces: Interactive Evolution as a
Tool for Sound Generation., in: ICMC.

Dawkins, R., 1986. The blind watchmaker: Why the evidence of evolutionreveals a universe
without design. WW Norton & Company.

Magnusson, T., 2015. Herding cats: Observing live coding in the wild. Comput. Music J. 38, 8–16.

Paz, I., Nebot, A., Mugica, F., and Romero, E. 2017. “Modeling perceptual categories of
parametric musical systems.” Accepted for publication in the Special Issue of Pattern
Recognition Letters http://www.sciencedirect.com/science/article/pii/S0167865517302374

https://bohemiandrips.bandcamp.com/track/b2-en-casa

Paz, I., 2016. GMuSE: a geometric representation for multi-parameter spaces exploration.
Interface Politics 1st International Conference. Publications Gredits. Barcelona p.p. 201-212
ISBN (Ed. Impresa): 978-84-617-5132-7.

SuperCollider Help Retrieved form
http://www.gredits.org/wp-content/uploads/2016/11/Publicacions_Gredits_04_V2_web.pdf

Rohrhuber, J., de Campo, A., 2009. Improvising Formalisation: Conversational Programming and
Live Coding. New Comput. Paradig. Comput. Music.

Wang, G., Cook, P., 2004. On-the-fly Programming: Using Code As an Expressive Musical
Instrument, in: Proc. 2004 Conf. New Interfaces Music. Expr.,pp. 138–143.

Wilson, S., Cottle, D., Collins, N., 2011. The Supercollider Book. MIT Press, Cambridge, MA.

http://www.gredits.org/wp-content/uploads/2016/11/Publicacions_Gredits_04_V2_web.pdf

	1. INTRODUCTION
	2. Rulex And Int-rulex algorithmS
	2.1 Rulex Algorithm: Structuring Data through Patterns
	2.1.1 Preset
	2.1.2 Strict rule

	2.2 Functions
	2.3 IntRulex: from Points to Intervals
	2.3.1 Interval Rules Example

	3. Examples: Creating structure from perceptual categories
	3.1 Example One: En Casa
	3.2 Example Two: Visions of Space

	4. Discussion and further work
	REFERENCES

