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ABSTRACT

Live  coding  builds  and conducts  the  sound by  real-time intervention  of  parametric
devices  (such  as  synthesizers).  Coding  a  piece  on-the-fly  requires  to  bridge  the
cognitive  gap  associated  with  devices’  huge  parameter  spaces  and  the  possible
nonlinear sound variation built-in within them. A possible approach is to have some
preselected parameter combinations of which the aural result is known, as a starting
point for the performance. However, collecting/memorizing many combinations is time
consuming, and using only a few could result in monotony. Therefore, it is convenient
to develop models that help to reduce devices’ operational complexity with the aim of
easing certain musical tasks, such as the automatic creation of variations. Here, a rule-
based  approach  that  models  the  relationships  among  combinations  of  parameter
values and perceptual categories assigned to them is described. The extracted rules
can be used on-the-fly either to simply reproduce the labeled parameter combinations
(by  calling  them  by  their  class  as  a  set  of  presets),  or  to  obtain  new  unheard
combinations that the model predicts to be consistent with a selected category. The
rules  are  human-readable  and  describe  how  parameter  combinations  relate  to
perceptual  categories.  Concrete  examples  using  the  system to  select  material  and
create the structure of two pieces are presented and discussed.

1. INTRODUCTION

Live coding (Collins et al, 2003; Magnusson 2015; Wang and Cook 2004) intervenes
parametric devices to create music and sound (Brown and Sorensen 2009; Rohrhuber
and de Campo 2009). By tweaking parameters, the coder explores, categorizes, and
selects the appropriate combinations for the different musical contexts. Thus, a piece
can  be  seen  as  the  succession  of  combinations  that  creates  spatial  and  temporal
structures.  Coding  a  piece  on-the-fly  requires  guiding  the  sound  by  changing  the
parameter settings. This imposes cognitive challenges due to the huge size of devices’
parameter spaces, and to the possibility of non-linear sound variation built-in within
them. Therefore, it is normal to have some preselected parameter combinations, of
which the aural result is known, as a starting point from which to explore during the
performance. These combinations chart the parameter space into labeled perceptual
categories. However, when only a few combinations are used, the performance can
quickly become repetitive and boring for  a listener,  and again,  remembering many
combinations imposes practical challenges. This contribution proposes the use of rule
learning as a tool to handle this problem.

To  clarify  what  perceptual  categories  are,  consider  a  system  with  two  variable-
frequency oscillators. A possible category would contain all the parameter combinations
producing  a  consonant  output  (in  acoustics  a  sound  with  harmonic  partials),  and
another  category  could  be  sound  with  “chaotic”  quality.  Keep  in  mind  that  the
perceptual categories are freely defined and assigned by the user. Some issues related
with an inconsistent selection of the material are discussed in the conclusions.
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It is by means of an aural exploration of the combinations of parameter values that the
system's capabilities are learned, and the selection and perceptual categorization of
the  musical  material  are  performed.  This  being  such  a  common  activity,  it  seems
logical  to  develop  models  to  aid  in  reducing  the  operational  complexity  of  the
generators  and facilitating certain  musical  tasks,  such as the automatic  creation of
variations within a part of a piece.

It  is  worthy  to  say  that  there  have  been  excellent  examples  of  methodologies  for
finding sets of parameters that successfully produce entities with specific perceptual
properties.  For  example,  Dahlstedt  (2001)  and  Collins  (2002a;  2002b)  applied
interactive  evolution  (Dawkins  1986),  which  uses  human  evaluation  as  the  fitness
function of a genetic algorithm, for system parameter optimization. In Dahlstedt (2001),
this technique was applied to sound synthesis and pattern generation tasks, while in
Collins  (2002a;  2002b),  it  was  used  for  searching  successful  sets  of  arguments
controlling algorithmic routines for audio cut procedures.

This work is inspired by these methodologies, and further focuses on creating models of
the  information  that  is  produced  during  the  aural  exploration  process  (parameter
combinations) intended for the following objectives:

1. To provide a structured and interpretable representation of the relationships among
parameter values and perceptual categories.

2. To reduce the cognitive and operational complexity of the systems by providing a
way to generalize a list  of  “presets” into a set of  rules describing each perceptual
category.

3.  To extend the compositional  capacities  by suggesting new unheard (unexplored)
parameter  combinations  that  the  system  predicts  to  be  consistent  with  a  given
perceptual category.

An early version of the algorithms described here can be found in Paz et al. (2017).
They create rule models of the patterns expressing the relationships among parameter
values  and  categories.  Rule  models,  in  contrast  with  subsymbolic  approaches  (like
neural net classifiers), are human readable and yield interpretable information, which
makes them especially attractive for applications in contexts such as live coding, in
which the greater the understanding of the system, the better the user possibilities for
real-time interaction. Furthermore, it is possible to extend the rule model to unexplored
regions of the space expected to be consistent with the selected perceptual categories.
The present manuscript describes the current version of the algorithm presented at Paz
et al. (2017) providing examples of how the different models have been used. The rest
of  the manuscript  is  structured  as  follows:  section 2 introduces  the rule  extraction
algorithms  (Rulex  and  IntRulex),  section  3  presents  applications  in  two  concrete
examples, and finally, section 4 discusses the results and possible further work.

2. RULEX AND INT-RULEX ALGORITHMS

2.1 Rulex Algorithm: Structuring Data through Patterns

The data is  captured through an auditory exploration,  in  which arbitrary perceptual
categories are sought and selected. During the exploration, the system parameters are
tweaked in turn, until the user decides to store the current combination of parameter
values into one of the existing categories (or classes) or into a newly-defined one. An
input  datum  is  named  a  “preset”  evoking  the  way  synthesizer  configurations  are
named. Each one is saved as a a list containing the set of parameter values and its
associated category. 



The only parameter of the Rulex algorithm is the “distance factor” d. It indicates the
maximum distance between two combinations of the same category for them to be
grouped  into  a  new  rule.  In  this  contribution  the  Hamming  distance  (number  of
parameter by parameter differences) was used. In the examples presented here “d”
was  set  equal  to  1.  Current  research  is  using  greater  distance  factors  (and  other
distance functions). 

The Rulex algorithm takes as input a set of “presets”. Then, it searches iteratively for
patterns and groups the data among which a pattern is found. Two or more data of the
same category exhibit a pattern if they are “located” at a distance factor “d” from each
other.  The grouped presets are represented by structures called “Strict Rules”.  The
output of the algorithm is a set of Strict Rules. Next, both concepts are defined.

2.1.1 Preset
A preset is a labeled parameter combination. It is represented in a list in which the first
n-1 elements are parameter values and the entry n contains the perceptual category
(or class) associated with the parameter combination.
preset = x1, x2,. . . , xN-1, xN

2.1.2 Strict rule 
Is  a  labeled  list  in  which  the  initial  n-1  entries  contain  sets  (whose  elements  are
parameter values), and the entry n contains a perceptual category. It satisfies that all
the  combinations  formed  by  taking  one  element  from  each  set,  belong  to  the
perceptual category of the rule.
rule = {x1}, {x2}, . . . ,{xN-1}, xN

The rulex pseudocode is shown below. The main functions appear in bold font and are
described below.

rulex( set of presets P,  set of rules R, distance factor ):
if R == empty set:

transform preset_into_rule(first preset) and move it to R
for preset in P:

rule1 = transform preset_into_rule(preset)
for rule2 in R:

if pattern_found(rule1, rule2):
create_rule and add newRule to R

add rule1 to R
delete redundant rules from R
return R

2.2Functions

1. preset_into_rule
The preset_into_rule function takes a preset and returns a rule in which the first n-1
entries  have  sets  with  a  single  value,  corresponding  with  the  respective  preset
parameter value. For example:
preset = x1, x2,. . . , xN-1, xN

preset_into_rule(preset) = {x1}, {x2}, . . . ,{xN-1}, xN

2. pattern_found
Let set1 and set2 be the sets located at the jth entry of rule1 and rule2, where 0 ≤ j ≤
n-1. Note that 0 is the first entry of the rules. Let difference count the number of times
set1 ≠ set2.



The pattern_found function takes two rules as input and checks whether or not they
satisfy the following conditions:
        class rule1 == class rule2
        difference ≤ distance factor = 1
The pattern_found_function returns an array with three entries:
        pattern: True, in case both conditions are satisfy. False, otherwise.
        unions: A list containing for each j set1 ∪ set2
        indexes: A list of the j indexes for which set1 ≠ set2.

3. create_rule
This function receives the current rule (rule1) being compared and the output of the
pattern_found function. As a pattern has been found, a new rule is created. It is formed
with the rule1 by overwriting the entries contained at the array of indexes, returned by
the pattern_found function, with the unions of the sets of the corresponding entries in
rule1 and rule2. The pseudocode is shown below:

create_rule(rule1, unions, indexes):
rule = rule1
for index in indexes:

rule[index] = unions[index]
return rule

4. delete_redundant_rules
This  function searches  in R  for  those rules that  are  “contained” in  others.  rule1 is
contained in rule2 if the following conditions are satisfied:
1. class rule1 == class rule2
2. ∀  j rule1[j] is subset of rule2[j]
When a rule1 is contained in a rule2, rule1 is eliminated from R.

As a simple example,  consider  the dataset  shown at  the top of  Table 1.  The rules
extracted by the Rulex algorithm are shown at the bottom. 

Preset Parameter 1 Parameter 2 category

1 1 2 a

2 1 4 a

3 5 2 a

4 5 4 a

5 2 1 b

6 2 3 b

7 4 1 b

8 4 3 b

Rule{1,2,3,4} {1,5} {2,4} a

Rule{5,6,7,8} {2,4} {1,3} b

Table 1. Rulex applied to a set of 8 presets. The extracted rules are shown at the bottom
of the table. The sub-indexes indicate the instances contained at each rule.

2.3IntRulex: from Points to Intervals

The Rulex algorithm produces a data representation structured by patterns. However,
although they are interpretable structures, the Strict Rules represent only points in the
space (those formed by taking one element from each set). Therefore, an extension of



the coverage of the model for the rules to be able of “guessing” unexplored parameter
combinations  consistent  with  their  perceptual  categories  is  desirable.  This  is  the
function of the IntRulex algorithm. It starts from the rules created by the Rulex and
extends its validity from points to intervals in the space. For that, it replaces the sets
located at the n-1 parameters of the Strict Rules, by the intervals formed between their
minimum and maximum values. By using a heuristic of maximum volume the algorithm
then solves the contradictions, i.e., regions assigned by the model to more than one
category, that can be created during this process. Next an example is presented.

2.3.1 Interval Rules Example
To provide insight of how the IntRulex works, consider the following set of Strict Rules:

[{2}, {3}, b, 1],  [{1, 5}, {2, 4}, a, 1]

As  said,  the  algorithm  begins  by  replacing  the  sets  located  at  each  of  the  n-1
parameters by the intervals formed between their minimum and maximum values.

[ [2], [3], b, 1 ], [ [1, 5], [2, 4], a, 1 ]

These rules assign to their corresponding category, all combinations formed by taking
one value from each interval. In this case a contradiction is created between the valid
combinations [2,3,b] and [2,3,a] constructed with the first and second rule respectively.
To solve the contradiction,  the algorithm proceeds as follows:  Note that  to  solve a
contradiction it is sufficient to modify the interval in only one of the parameters. In the
example, the contradiction among the rules disappears in any of the following cases:

[ [2], [3], b, 1 ], [ [1], [2, 4], a, 1 ], [ [5], [2, 4], a, 1 ]

[ [2], [3], b, 1], [ [1, 5], [2],  a, 1], [ [1, 5], [4],  a, 1 ]

To select which parameter to “break” a criteria of “maximum volume” is taken, i.e., the
set of rules covering the largest space is selected (although other heuristics can be
implemented). In the example the second set of rules is selected. The resulting rules
are called “Interval Rules”. For further references of this process the reader is referred
to Paz et al. (2017). Figures 1 and 2 shown the original Interval Rules with the two
possible partitions respectively.

Figure 1. Original Interval Rules [ [2], [3], b, 1 ], [ [1, 5], [2, 4], a, 1 ] created by the
IntRulex. It can be seen that a contradiction exists.
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Figure 2. Possible sets of rules that eliminate the contradiction. As a heuristic of
maximum volume is used, the second set of rules is selected.

3.EXAMPLES: CREATING STRUCTURE FROM PERCEPTUAL CATEGORIES

In this part two examples of how the Rulex and IntRulex algorithms can be used for the
specific tasks of selecting aural material and automating its generation during sections
of pieces is presented. The sections are actually defined through the evolution of the
perceptual  categories,  so  through perceptual  categories  selection  and labeling,  the
structural building blocks are also created. The pieces have been lived coded by using
the rules to automate the selection of the material for each part, giving the coder the
possibility to manipulate in the meanwhile, for example, the signal processing. User
tests  (for  the  validation  of  the  rules)  conducted  with  students  of  the  Real  Time
Interaction Class of the Master's Degree in Sound and Music Computing of the Pompeu
Fabra  University  (winter  term  of  2016-2017),  as  well  as  with  computer  music
composers and audio technology developers can be found in Paz et al. (2017). The
examples presented here correspond to the pieces “En Casa” and “Visions of Space” by
Iván Paz, which are available at Bohemian drips  (2017a; 2017b). These examples were
selected  since  they use Strict  and  Interval  Rules  respectively.  The Strict  Rules  are
useful for systems in which perceived categories change abruptly when moving away
from the classified point. In contrast, when the changes in the perceptual categories
are smooth in response to changes in the system parameters, the system is a good
candidate for Interval Rules, which generates more variability.

3.1 Example One: En Casa

For “En Casa”, the following SuperCollider (Wilson et al., 2011) node definition (Ndef)
was used:

Ndef(\EnCasa, {
arg freq1 = 50, freq2 = 100, amp = 0.2;
var sig;
sig = Mix.ar(Saw.ar([freq1, freq1-1, freq2, freq2 + 1], amp));
sig = sig + Impulse.ar(20, amp/4);
sig = FreeVerb.ar(sig, 0.33,0.5,0.5,1) * amp;
sig = Limiter.ar(sig,1);

} );
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The system parameters are the frequencies (freq1 and freq2 in Hz) and the amplitude
(amp). They control the frequencies and amplitudes of the four sawtooth generators.
Both frequencies were restricted to the interval [0, 400] and the amplitude took values
in  [0,1].  To  select  the  data  a  geometric  interface  (Paz,  2016) was  used.  For  the
selection  of  material,  freq2  was  freely  tweaked  until  select  119.563484Hz  (for  no
particular reason but its sound). Then, freq1 was tweaked and all the frequencies in the
interval [0, 120.930231] producing “interesting intervals” were searched and labeled
with “category 1”. The data and the extracted Strict Rule for this category are shown at
Table 2 at the top and bottom.

preset freq1 freq2 amp category

1 96.744186 119.563484 0.807776 category 1

2 50.232559 119.563484 0.807776 category 1

3 117.209303 119.563484 0.807776 category 1

4 72.558141 119.563484 0.807776 category 1

5 120.930231 119.563484 0.807776 category 1

6 39.069769 119.563484 0.807776 category 1

rule{1,2,3,4,5,6} {96.744186,  50.232559,
117.209303,  72.558141,
120.930231, 39.069769}

{119.563484} {0.807776} category 1

Table 2. Rulex applied to a set of 6 presets. The extracted rule is shown at the bottom of
the table.

Then,  freq1  was  tweaked  until  178.604650Hz  was  selected.  After  that,  freq2  was
tweaked in the interval  [119.563484, 178.604650] and all frequencies producing an
interesting interval with freq were selected and categorized as “category 2”. The data
is shown in Table 3. Note that also 179.561090 was selected.

preset freq1 freq2 amp category

7 178.604650 119.563484 0.807776 category 2

8 178.604650 135.675585 0.807776 category 2

9 178.604650 150.674987 0.807776 category 2

10 178.604650 168.215823 0.807776 category 2

11 178.604650 179.561090 0.807776 category 2

12 178.604650 144.728661 0.807776 category 2

Table 3. Presets captured for the second category.

The process  was repeated for  the four categories  that  formed the structure  of  the
piece.  Note  that  in  Tables  2  and  3  intervals  like  the  unison  (freq1=120.930231,
freq2=119.563484 and freq1 = 178.604650, freq2 = 179.561090 for categories 1 and
2  respectively),  and  the  perfect  fifth   (freq1=178.604650,   freq2=119.563484  for
category 2) are present in the data with small variations consequence of the beats.

3.2 Example Two: Visions of Space

The  Ndef  used  for  the  second  example  is  shown  below.  Because  the  synthesis  is
somehow messy, it leads to a rather unintuitive perceptual output but we can still make



sense of  the  system and chart  its  parametric  space  into  meaningful  categories  by
labeling.

Ndef(\visions,{
             arg freq, freq1, freq2, numharm, amp;
             var sig;
            sig = Blip.ar(freq, numharm) * amp;
            sig = sig + Blip.ar( [FSinOsc.kr( freq * 2 ), 
                     freq + 1, freq/2, freq -1] , numharm * 1.4) !2 * amp;
           sig = sig + Saw.ar([freq1, freq1 - 1, freq1 + 3], amp/9);
           sig = RLPF.ar(sig, SinOsc.kr([0.1, 2], 0, [1700,480], [4000,700,5000])/[20.51,20],
                    SinOsc.ar(0.1,1.5*pi) + 1.05);
           sig = FreeVerb.ar(sig, SinOsc.kr(freq2),0.8, 0.5, 1) !2;
           sig = Limiter.ar(sig,1);
});

In this example, three perceptual categories were chosen for the structure of the piece.
They were selected to produced an increase in the “impression of chaos” while going
from category 1 to 3. The selection was performed by tweaking one parameter at time
to  favor  the  formation  of  rules.  The  system components  are  band-limited  impulse
generators (“Blip”), band-limited sawtooths (“Saw”), resonant low-pass filters (“RLPF”),
a reverb effect (“FreeVerb”),  a sinusoidal  oscillator (“SinOsc”),  and an efficient sine
wave  generator  based  on  a  ringing  filter  (“FSinOsc”).  For  the  components
documentation the reader is referred to (SuperCollider Help). The system’s parameters
are: “numharm” (number of upper harmonics added to the fundamental frequencies of
the Blips), “freq”, “freq1”, and “freq2” (fundamental  frequencies of the Blip and Saw)
and “amplitude”  (amplitude  level  of  the  different  components).  Table  4  shows  the
extracted Strict and Interval Rules for the first category.

freq freq1 freq2 numharm amp category

Strict Rules

{242.000009} {90.636051,  121.821141,
161.278355,  214.226604,
194.188201, 125.672603}

{0} {50} {1.7} chaos 1

{208.930221,
168.511626,
254.860476,
192.395351,
148.302328}

{125.672603} {0} {50} {1.7} chaos 1

Interval Rules

[242.000009]  [90.636051, 214.226604] [0] [50] [1.7] chaos 1

[148.302328,
254.860476]

[125.672603] [0] [50] [1.7] chaos 1

Table 4. Strict Rules (top) and Interval Rules (bottom) created with the data captured for
the perceptual category “chaos 1”.

In  a  mathematical  sense,  the  perceptual  categories  selected  in  this  example  form
continuous convex spaces  in the dimension of  the selected parameters,  so Interval
Rules can be used as a model of the perceptual spaces with the added advantage of



producing  more  variability  within  the  categories  when  it  is  used  to  generate  new
material.

4.DISCUSSION AND FURTHER WORK

The  presented  algorithms  provide  structured  representations  of  the  implicit
relationships among parameter settings and specific perceptual categories from labeled
data  collected  during  an  auditory  exploration  of  a  parametric  musical  system.  The
produced  models  can  be  used  to  address  specific  musical  tasks.  In  the  examples
presented,  they  are  used  to  to  select  material  and  to  create  musical  structure  by
defining the different parts of two musical  pieces. The algorithms were designed to
allow different levels of generalization, optionally including unclassified combinations.
This  approach  allows working with  architectures  in  which  the changes in  the aural
perception  in  response  to  changes  in  the  parameter  values  range from smooth  to
rough. If the perceptual category selected varies a lot in response to small changes in
the parameter values, as is the case in the first example, the Strict Rules can be used.
If small changes in the selected perceptual category occur due to changes in parameter
values,  the  Interval  Rules  offer  more  variability,  a  more  compact  model,  and  the
possibility of creating new material without stepping out of the selected categories. The
created models can be used as the starting point to more general models. For example,
an extension for the IntRulex algorithm that connects the created intervals by using
trapezoidal fuzzy membership functions covering all the observed space is presented in
Paz et al. (2017).
A possible extension for the exploration process (in which the data is captured) would
be to provide facilities for the user to perform a guided exploration of the space.
Needless to say, it is essential for the proper functioning of the system, that the user is
consistent in  the selection of  the combinations placed at  each category.  Therefore,
another possible extension would be to provide the user with an informed mechanism
to audit the “outliers” of each perceptual class, in order to review and further refine the
inner consistency of each category.
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