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ABSTRACT

In this paper the livecoding environment Mercury is introduced. An interpreted language that is designed with the focus on
quick and hands-on composing, performing and communicating of live-coded music and sound. Mercury provides the
performer with a highly abstracted programming language for music and sound complemented with visuals. By allowing
for a higher level of abstraction, the coder does not need to write large amounts of code and the comprehension by the
audience is improved. Combining the sound with visual elements adds value to this understanding. The environment
incorporates generative and transformational list functions to assist in algorithmic composition processes. Mercury has
been used for performances at various livecoding events and proven itself as a live-performance tool.

1 Introduction

Livecoding is the art of programming software, in many cases from scratch, as a performance for auditive and/or visual
output. During these performances the code is projected for the audience to read along. In little time the performer has
to write many lines of code in order for the music to be generated. All of the musical parameters are written in code and
manipulated by the code while running in real time. During the performance code has to be written for many layers in the
music, on micro level, for notes and timbre of instruments, and also on macro level, for chord progressions, tension in the
music and rhythmic structures. Meanwhile the performer tries to “maintain enough variety to keep the audience engaged”
(Collins 2011), with the risk that some might find the music not up to their standards (Burland and McLean 2016). Given
all this, a livecoding performance is a demanding task with a high cognitive load, “leading performers to rethink the design
of their language interfaces” (McLean and Wiggins 2011). In this paper the live-coding environment Mercury is introduced.
An interpreted language that is designed with the focus on quick and hands-on coding for live performances. Mercury
provides the performer with a highly abstracted programming language for music and sound combined with visuals. The
language is designed with two end-users in mind (Blackwell and Collins 2005). First and foremost the livecoder, but
secondly also the audience. Firstly, the reader will be introduced to the general syntax of the environment, to get familiar
with the basic principles of the code for better understanding all the examples throughout the paper. Secondly all design
choices for the language, functions, interface and sound-design will be described based on the filosophy to provide the
performer with a high abstracted language and keep transparency towards the audience. Concludingly ideas for future work
will be discussed.

2 General syntax

Mercury is an interpreted language, with a code structure similar to languages like javascript and ruby. The language is
written as highly abstracted and uses the Max/MSP programming language for its audio engine and openGL visual engine.
Every line of code is interpreted as a new line and it therefore does not need to be ended with a semicolon. The code is
evaluated from top to bottom, and variables must be declared before the instantiation of a new instrument, if that instrument
needs to use the variable. All functionalities are sorted in three categories. To create a list of values, the code is started with
the command ring. A single variable is also created with this command, and is basically a list with only a single element.
To produce sound a new instrument can be created, such as a sampler or synthesizer, with the command new. If a parameter
from an instrument needs to be changed, the set command can be used. The entire code needs to be run in order to hear it
take effect. This is done by using the shortcut key CMD + R. This all helps to give it an “immediate code and run aesthetic”
(Collins et al. 2003).
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2.1 Ring arrays

The ring is a type of array that wraps back when a lookup index exceeds the length of the array. This is also known as
a circular array or circular buffer. The reason for the choice of this datatype is discussed in chapter 5.1. All rings are
global variables, and can be used by any instrument. The instantiation of a variable with the command ring must always
be followed by a name. This name can be any word, if at least two or more letters and without spaces. When a ring is
declared by manually providing values, the name of the variable is follow by a space and the list is typed within parenthesis.
When using a function to generate a ring, the third argument is the name of the function directly followed by parenthesis
enclosing the arguments.

ring bassLine (0 3 12 7 5 10 3)
ring bassGain (0.7)
ring bassRhythm random(8 2)

In the examples above there are three rings added to the code, named bassLine, bassGain and bassRhythm. The bassLine
is a ring consisting of seven integers. The interpreter knows it is a ring because there is a space between the variable name
and the parenthesis. The second variable is a single floating-point value. This single value is also writing a ring, only
consisting of one single value. The third variable bassRhythm is a ring generated with the random() function.

2.2 New instruments

When using the command new, to generate an instrument, it must be followed by the keyword of the instrument-type. For
example synth to generate a synthesizer, or the keyword sample to use a prerecorded sample from the file library.

new synth saw gain(0.8)
new sample kick_909 time(1/4)

As shown in the example above both the synth and the sample have one keyword. This keyword determines the basis of the
sound and is written as an extra argument after a space. In the case of the synth the basis is a saw (sawtooth waveform),
in case of the sample it is an audiofile named kick_909. The rest of the parameters of that instrument are written as a
function. You can set as many parameters for an instrument in the same line as you want. Both sound-generators have a
large list of various functions and arguments that are used to change there sounds and compositional parameters such as
timing and pitch. These functionalities will be discussed in more detail in chapters 2.5 and 7.

2.3 Set parameters

The length of a code line can grow large when a lot of parameters have to be set for an instrument. This is where the set
command comes in, combined with the name() function for an instrument. When an instrument is instantiated, by default
it belongs to the all group. Using the set command, followed by all, all other parameters can be called upon with their
function.

new sample kick_909
new synth sine

set all time(1/16) gain(0.4)

In the example above the synth (with a sinewave waveform) and the sample (with the kick_909 audiofile) has no parameters
set on there own line of code. Using the set all command followed by functions for parameters (time and gain), these
functions are called for both instruments.

new sample kick_909
new synth sine name(wave)

set wave time(1/16) gain(0.4)

When the synth in the example above is created with the function name(wave), the all group will be overwritten. Now
functions can be called for this instrument specifically. Optionally the user can give multiple instruments the same name to
call functions with the same line of code.



2.4 Global settings

Besides these three basic commands, there are also a set of global parameters that can be changed to effect the entire
composition and all running instruments. The syntax for these parameters is as follows; type the keyword for the variable
and then a space followed by the argument(s). Multiple arguments are separated by spaces. An example for setting the
tempo in beats per minute, add a seed for random number generators and syncing all midi notes to a certain scale and tonic:

set_tempo 108
set_random_seed 4532
sync_to_scale minor_harmonic A#

2.5 The timing system

Writing for-loops or while conditions to create a repeating melody or beat is not necessary in Mercury. The environment is
continuously running a loop, and all instruments are synced to that loop using the time() function. All timing is therefore
relative to the global variable set_tempo. This function determines the timing at which the instrument gets (re-)triggered.
For example, set the tempo at a value of 120 (set_tempo 120). The 120 in set_tempo is in beats per minute, measured in
quarter notes. When a time of 1 is set (time(1)), the instrument gets triggered every bar, which is 4 times the time interval
of the beats per minute (every 500 milliseconds). This results in one trigger every second (4*500 = 1000 ms). A time
of 4 (time(4)) means trigger this instrument every 4 bars (4*(4*500) = 4000 ms). A smaller timing can be made as a
floating-point value or a fraction. For example time(1/4) will result in a quarter-note beat, which corresponds to the beats
per minute of 120 (every 500 ms). Complex timings can be made with all other rational numbers. For example a time of
5/13 (time(5/13)) will result in a timing interval of 769.23 ms, ((60000/120*4) * (5/13)). For an in-depth explanation
on the use of polyrhythms with the time() function the reader can refer to section 6.2.

set_tempo 120
new sample kick_909 time(1/4) //this kick is played every quarter note
new synth sine time(4) //this sine synth is triggered every bar
new sample hat_909 time(5/13) //this hihat is triggered every 769.23 ms

3 Quick expression

While many environments for live-coding music already focus on performance by utilizing a very extensive and impressive
library of functions for sounddesign and composition tools, they still require many lines of written code. When evaluating
livecoding by design features from the Cognitive Dimensions of Notation framework (Blackwell and Green 2002) it comes
of with “low visibility, low closeness-of-mapping and low role-expressiveness” (McLean and Wiggins 2011). Although this
gives those environments a lot of flexibility and options, it requires the performer to either prepare a lot of code-snippets
for functionalities, or write many lines and memorize all syntax and functions through hard and intensive practice (Nilson
2007). Using abstraction allows the performer to “focus on the compositional structure behind the piece” (McLean and
Wiggins 2011). Through a questionnaire audience members of live coding events have stated that the “events can get boring
quickly due to little change over time” or that “the music quality is not up to their standards” (Burland and McLean 2016).
Some also stated to be disappointed when code is already written prior to the performance and shown on screen. Keeping
the audience engaged to the performance is a difficulty Collins also acknowledges (Collins 2011). Because of this, the
end-user in mind for Mercury is first and foremost the live-code performer, but secondly the audience, who will be the
consumers of the music generated with Mercury. Mercury will try to “meet the needs of this user population in whatever
way is most appropriate.” (Blackwell and Collins 2005).

Mercury takes care of a lot of basic functionalities that live-coders use during their performance. Among others these
functionalities include various pre-written sound synthesis instruments, a sampler, sequencing, (algorithmic) composition
techniques and audioprocessing effects. This takes form as a high level of abstraction (high visibility in terms of CDN)
that allow the performer to quickly generate their first sound when on stage, move on to compositional aspects of the
performance and combine given functions as they please. With this the performer can “explore electronic music through its
natural tool, the computer” (Nilson 2007). Because Mercury is running a loop, creating the first sound will immediately turn
into the start of a sequence. All parameters for the sounds have initial values, so that the output of a sound is guaranteed.

To preserve the speed of typing code, Mercury has a few shortcut keys built-in to navigate through the code and edit quickly.
These shortcuts are chosen in such a manner that the coder can leave their hands at the starting-position keys (left index
finger at F, right index finger at J). Navigating shortcut keys that replace the arrow keys are a combination of Alt + A, S,



D, W. With the commands Alt + Q or Z the user jumps to the top or bottom of the editor. The backspace can be used with
Alt + B. Using the command Alt + C duplicates the current line to the line beneath it. With the command Alt + X the
user can remove the line where the cursor currently resides. A common used coding trick is the so called commenting of a
line to disable its use when running the code. In Mercury you can comment or uncomment a line with the shortkey Alt +
/.

4 Transparency towards the audience

Besides the reasons for quick hands-on performance, another reason for the high level of abstraction in Mercury is the
transparency towards the audience. A typical issue during live-coding performances is the large amount of code projected
on the screens behind the performers with the gesture of openness. The amount of code is obfuscating for audience
members and because of that audience members can feel excluded from the performance “by a gibberish of code in an
obscure language”(McLean and Wiggins 2011). This while “many of the participants enjoy the opportunity to learn from
the projected code” (Burland and McLean 2016).

When working with a high level of abstraction it is easier for the audience members to follow what is going on in the
music and what the performer is working on. Using musical words for parameters, settings and functions result in more
transparency. For example using a term like set_tempo gives a better indication on what it is about then set_bpm, which
might be a normal abbreviation for musicians, but not so much for non-musical spectators. Other methods like note(),
gain() and filter() clearly indicate what their function is. For list processing techniques there are clear function names
such as scramble(), mirror(), join(), random() and many more described in chapter 6.

Another feature in Mercury to preserve transparency in coding is the automatic adjustment of text size on the screen and
the character and text lines limitations. When the performer adds more lines of code, the text will automatically resize to fit
the screen, so all text remains in sight of the audience and the coder. This also happens when more characters are typed on
a line. To make sure that the text will always be readable, Mercury does not allow for more then 30 lines of code. These
restrictions will help the audience keep an understanding of what is going on, and will also force the performer to delete
lines of code when working on a new part in the composition.

To complement the visual part of the already projected code, Mercury also produces visual objects closely related to the
audio (and connected to the instruments) during the performance. These elements are geometric shapes that appear when an
instrument is created based on the type of instrument. Properties of the sound such as triggering, amplitude and frequency
are closely linked to respectively the movement, scaling and rotation of the shape. These visual features will help the
audience to understand the code better and also make for a more interesting live performance to keep the audience engaged
and entertained. Something that had already been practiced back in 1938 by Fischinger’s “An Optical Poem” in which he
gave life to music through the use of geometric shapes and many colors (Fischinger 1938). Also Barri (2009) wrote in his
paper that “by letting the audience literally see how the composer works and how the composition is constructed, great
value could be added to the listening experience”. See figure 1 for a screenshot of Mercury.

5 Algorithmic & generative composition strategies

Livecoding is in many cases about improvising, experimentation and conversation with music and sound (Nilson 2007).
The livecoder has practiced a lot and reuses the gained experience, knowledge and written code to piece together new code,
similar to improvised, in-the-moment, jazz performances (Blackwell and Collins 2005, @Burland2016). A live-coder
might write melodic or rhythmic patterns from heart, but is more likely to utilize (pseudo)randomness and algorithmic
composition techniques to generate patterns in melody and time. The techniques present in Mercury to make algorithmic
composing possible are ring-arrays, fuzzy-logic, seeding of random number generators, scale mapping, and various list
processing techniques. These features build upon the idea Spiegel describes as “a basic library consisting of the most
elemental transformations which have consistently been successfully used on musical patterns” (Spiegel 1981).

5.1 Using circular arrays

When writing melodies or rhythms a composer can think of these in terms of patterns. A sequence of numbers that will be
repeated in time and represent the pitch of a note, the rhythmic structure or something else. To allow for continuously
looping through a sequence of numbers, Mercury uses circular arrays, in short called rings. By applying a modulus
operation on the given index value, wrapping back to the start, a ring-array will always return a value from its array. This is
similar to what Sorenson describes as “by changing the modulus it is possible to loop subsections as a method of motivic
development” (Sorenson and Brown 2007). Every instrument in Mercury uses an internal counter. This counter increases



Figure 1: A screenshot of the Mercury environment, showing three instruments written as code (sawtooth bass, square
wave lead and 909 kick) and represented by three various platonic solids.

with one every time the instrument triggers its sound. The counter value is used to retrieve the next value from the ring.
This method allows the coder to generate arrays of arbitrary lengths and still hear a note play every time the instrument
triggers. Consider the following code:

set_tempo 120
ring someNotes (3 7 12)
new synth saw note(someNotes) time(1/16)

The synthesizer is triggering its sound every 16th note, simultaneously incrementing the counter by one. The first three
times this results in the index values 0, 1, 2. The fourth time the counter is at 3, but the ring only has three values.
Therefore the current count modulus the length of the list returns an index value of 0. After eighth notes, the played notes
are 3 7 12 3 7 12 3 etc. In all the following examples note values between 0 and 12 are used. This might seem odd if
the reader comes from the standard midi-notation. How the note system works in Mercury will be described in chapter 7.1.

When creating rhythmic patterns, or beats, a ring with zeroes or ones can be declared. The 1 will represent a TRUE value,
and result in the triggering of the instrument, a 0 represents a FALSE value and will be ignored. For example:

set_tempo 120
ring aRhythm (1 0 1)
new sample hat_909 beat(aRhythm) time(1/16)

The sample hat_909 is counting in a 16th beat division. Similar to the previous example, every count is used as an index
for the ring. After 8 beats, this results in the following pattern: x - x x - x x -.

In the case a rhythmic pattern is used in conjunction with a melodic pattern, the triggering of the instrument also increments
a second internal counter. That second counter is used as lookup value for the melodic pattern. In the example below the
same rhythm is applied as in the example above. This will result in an identical rhythmic pattern. When the instrument gets
triggered the second counter is incremented and looks up the next note value from the someNotes ring. The final result
over 8 beats will be: 3 - 7 12 - 3 7 - 12. A dash means the instrument is not triggered.



set_tempo 100
ring aRhythm (1 0 1)
ring someNotes (3 7 12)

new synth sine name(wave)
set wave note(someNotes) beat(aRhythm) time(1/16)

The rhythmic and melodic patterns can also be truncated at a certain length. This is done by adding a second argument to
the beat() function, specifying the reset time (using the same timing-notation as the time() function). In the following
example the instrument plays a pattern of four notes, the counter resets every bar and the time is set to quarter notes. This
will result in the pattern: 0 3 7 0 0 3 7 0, after two bars.

ring someNotes (0 3 7)
new synth saw note(someNotes) time(1/4) beat(1 1)

5.2 Fuzzy logic

Besides static rhythms constructed of zeroes and ones a more algorithmic approach will be to use probabilities to generate
rhythmic patterns. As discussed by Collins (2001), using lists with probabilities is a way to “generate subtle variations
without breaking with the consistency of a style”. These probability lists, also referred to as templates, are constructed with
floating-point values from 0 to 1. Here a one means, always play this note, a zero means don’t play the note, and all values
in between are a probability the note will or will not get played. This fuzzy logic method is implemented in the language of
Mercury. Consider the following code:

set_tempo 90
ring fuzzy (1 0 0.3 0.2)
new sample kick_909 beat(fuzzy) time(1/16)

The kick sample will always be played on the first count (every quarter note), will never be played on the second count
(2nd 16th note), and on the third and fourth 16th note will play respectively 30 and 20 percent of the time.

5.3 Seeding random number generators

Random values and functions that use Random Number Generators (RNG’s), play a major role in algorithmic composition.
Besides using them to generate rhythms such as with the fuzzy logic method, the can for example also be used to generate
pitch values for melodies. An issue with random values, is that when re-running the code the values will be different
then before. This is of course expected behaviour from a random number generator, but it might be leave randomly
generated values intact every time the code gets evaluated. Or generate recurring random values, therefore create a form of
pseudorandomness. A solution to this problem is using a seed for the RNG. The seed can be any value other than zero. A
seed of zero results in using the system-time as input. The RNG outputs a uniform distribution.

set_random_seed 8429
ring randomNotes random(8 12)

In the example above the number 8429 is used as the seed for all the functions in the code that use. The list function
random() will return a ring of 8 values, with random numbers between 0 and 12 (excluding 12). This will always result in
the ring (11 3 6 6 2 0 0 10), when using 8429 as a seeding value, and the random function has not been called earlier
in the code.

set_random_seed 8429
ring moreNotes random(3 12)
ring randomNotes random(8 12)

Here you can see that an extra ring is added with a random() function. Therefore, when running this code, the moreNotes
ring will have the first three values (11 3 6), and the randomNotes will be filled with (6 2 0 0 10 9 10 3). The reader
will see that the first eight values are equal to the values from the previous example.



5.4 Scale mapping

Working with random numbers is useful, but mapping these values directly to corresponding MIDI-notes of that pitch will
always result in a chromatic scale (all integer midi-pitches are possible). To allow for various scales, with a different tonic,
a sync_to_scale function is included. The function must have one argument, namely the name of the scale, but can have
a second argument for the tonic (by default c). The function will map the used midi-pitch of all instruments to the closest
pitch from the selected scale according to a lookup-table of predefined scales. This function is in some ways similar to
Ableton Live’s scale midi-effect (“Live Midi Effect Reference, 23.6 Scale” 2018).

sync_to_scale minor D

ring someNotes (0 4 7 9)
new synth saw name(lead)

set lead notes(someNotes)

In the code above the scale is set to d-minor. The ring someNotes contains 4 note values. The performer should always try
and think of these values as the 12 semi-tones in a scale, where 0 is the tonic, 7 is the perfect fifth, and 12 is the octave. In
this case the scale is set in minor. The internal lookup table for minor gives the following 12 values (0 0 2 3 3 5 5 7 7
8 8 10) that belong to the minor scale. The chromatic note values are then used to look for a corresponding value in this
table to map to that scale, which will result in the new note list (0 3 7 8). The reader will see that the notes that do not
belong in the minor scale (4, a major third, and 9, the major sixth), will be mapped to the scale values 3 and 8. The last step
is offsetting the list to match the tonic of the scale, D. This means all values in the list will get 2 added to them, resulting in
(2 5 9 10).

6 Composition techniques toolset

Besides algorithmic composition techniques to generate sequences and patterns, a strong toolset for composers also consists
of techniques to transform those patterns or construct other patterns in different ways than with a RNG (Sorenson and
Brown 2007; McLean and Wiggins 2010). Some of these techniques are forms of list processing functions such as reversing
(retrograde), inversion, combining and duplicating. Others are techniques to generate lists with random values or a sequence.
Many of those techniques are found in algorithmic-composition genres such as twelve-tone and (total) serialism (Magnuson
2008).

6.1 Ring transformations

The ring functions can be sorted into two categories: the generating ring functions and the transformational ring functions.
The generating ring functions are spread, spreadinclusive, fill and random. Functions for ring manipulation are shuf-
fle/scramble, reverse/mirror, invert/flip, rotate/turn, duplicate, clone, palindrome, combine/join, thin/unique and merge/add.
Some have multiple names for the same function, because programmers come from different languages and backgrounds
where similar functions have different function names. While many of the functions are self-explanatory, some might need
some extra explaining.

The clone functions takes one ring as the first argument and after that a number for every clone that has to be made from
the ring. The number specified will be added to the entire clone of the ring. In the following example the resulting output
of clone() in theClones ring will be (0 5 9 12 0 5 9 12 -5 0 4 7 7 12 16 19).

ring shortList (0 5 9 12)
ring theClones clone(shortList 0 0 -5 7)

The palindrome function returns a ring constructed of the specified ring as argument, combined with that same ring reversed.
The result from the example below is (0 3 7 9 12 12 9 7 3 0).

ring shortList (0 3 7 9 12)
ring thePalin palindrome(shortList)

When using the merge/add function, two rings are provided as arguments. Every value from both rings with the same index
is summed. The result is a new ring with the same length as the longest ring from the input. If one of the rings is shorter
than the other, extra zeroes are appended. In the next example the result of the merge will be (1 1 0 1 0 2 0 1 1).



ring firstBeat (1 0 0 1 0 1)
ring secondBeat (0 1 0 0 0 1 0 1 1)
ring mergedBeat merge(firstBeat secondBeat)

The generative ring function fill() is used to fill a ring repeatedly with a specified values. The arguments are provided in
number pairs. The first number represents the number to be added to the ring and the second value represents the amount
of times that number will be added. In the next example the resulting ring will be (0 0 0 0 0 0 7 7 -1 -1 -1 -1 12
12 12 12).

ring aFilledPattern fill(0 6 7 2 -1 4 12 4)

6.2 Creating polyrhythms with timing

As described in the first chapter about the general syntax, the timing system in Mercury allows for complex rhythmic
patterns. Using the time() function sets the timing interval between every trigger of the instrument. When combining two
or more instruments, intricate polyrhythms can be achieved. For example using a 3/8 against a 2/8 timing, at a tempo
of 120 bpm, will result in an instrument triggered every 750 milliseconds, and an other instrument triggered every 500
milliseconds. Visually this will look like the following pattern:

x - - x - - x - - x - - x - - x - - etc.
x - x - x - x - x - x - x - x - x - etc.

Using other ratios as values for the time function will result in more complex polyrhythms. For example combining a 2/8
with a 5/6 results in a trigger every 500 milliseconds and a trigger every 1666.67 ms (in 120 bpm). Writing this down as a
pattern will look like this:

x - x - x - x - x - x - x - x - - x - - x - - x - etc.
x - - - - x - - - - x - - - - x - etc.

When combined with the beat() function, every trigger of the timing will look up the next value from a ring provided to
beat. This allows for combination of pre-written patterns, combined with fuzzy logic, combined with complex timing.

set_tempo 100

ring rhythmPattern (1 0.9 0.2)
new sample snare_909 time(3/16) beat(rhythmPattern)
new sample hat_909 time(1/8)

The example above shows a polyrhythmic pattern of 3 16th notes against 1 8th note. But on top of that the snare also has a
ring provided to the beat function to lookup probabilities for triggering events. This can result in the following pattern:

x - - x - - - - - x - - x - - x - - x - - - - - x - - x
x - x - x - x - x - x - x - x - x - x - x - x - x - x -

7 Synthesizer & sampler

As described in chapter 3, Mercury’s instruments already come with preset parameters to guarantee sound when adding an
instrument to the code. But these presets are not always what the performer might want to hear. Therefore all parameters
and sound effects can be set with functions. The instruments are divided in two categories, namely synthesizers and
samplers. The samplers trigger one-shot samples from the audiofile library included or provided by the performer. The
synthesizers make use of wavetable-synthesis.



7.1 2-dimensional notation

Mercury uses the standard MIDI notation, but with a slight twist. The notes are described in a 2-dimensional system, where
the x-axis is the interval in semi-tones (0 to 11), and the y-axis is the octave offset (-3 to 7). In order to describe a pitch,
the note() function is used and given two arguments, the interval between 0 and 11, and the octave. The origin of the
coordinate system, note(0 0) corresponds to MIDI value 36 (when sync_to_scale is not applied) and this is also the
default note value. note(0 2) corresponds with MIDI value 60 (C4, middle C, 261.626 Hz). If no octave value is provided,
the default 0 is used.

new synth saw name(bass)
set bass note(4 0) time(1/8)

In this example the synth is playing the fourth semi-tone in the octave starting at 36. This results in the note 40, or E2. If an
interval value lower than 0 or higher than 12 is used, the interval wraps between 0 and 11 and will respectively decrement
or increment the octave. Consider the following example:

ring aMelody (0 -1 -5 0 7 12 13 12)
new synth saw name(lead)

set lead note(aMelody 1) time(1/8)

The ring aMelody has interval values both lower and higher than the standard 0 to 11 range. Besides that, the octave is set
at 1. The result of this melody in standard MIDI notation will therefore be: 48, 47, 43, 48, 55, 60, 61, 60.

The main reason to use this system of notation for notes is to be able to re-use lists of values. These values can then be used
as the basis for other list processing techniques and form new melodies for other instruments. These instruments can then
also easily offset the notes to different octaves.

sync_to_scale major C

ring bassLine (0 7 12)
new synth saw name(bass)

set bass note(bassLine 0) time(1/16)

ring leadLine clone(bassLine 0 12 7 4)
new synth square name(lead)

set lead note(leadLine 1) time(1/16)

In the example above, three notes of the bassLine are re-used for the clone function and stored in the leadLine ring. The
lead instrument then uses those values as notes in the octave 1. At the end all the notes are synced to the C-major scale.

7.2 Further sound sculpting

Last but not least, other parameters of the instruments can also be set. When choosing a synth, the user has to choose a
waveform as a starting point. This can be a sine, triangle, saw or square. All these have various parameters that can be
modified by calling their function. Besides the already described functions such as note()/pitch(), time()/timing()
and beat()/rhythm(), the other functions are amp()/gain() for amplitude, envelope()/shape() for setting the envelope,
filter()/cutoff() for applying a lowpass filter and add_fx() for adding sound effects such as overdrive, reverb or delay.
For example a low sounding bass with distortion, a long envelope, large amount of reverb and some lowpass filtering will
be written like this:

set_tempo 80

new synth saw name(rumble)
set rumble note(-4 0) envelope(10 10000) time(2)
set rumble filter(2 1500 300 0.5)
set rumble add_fx(drive 4) add_fx(reverb 2 9)



8 Conclusion

In this paper the reader is introduced to the live coding environment Mercury. An environment with the focus on quick
and hands-on composing, performing and communicating of livecoded music. We see that, by allowing for a higher level
of abstraction, the performer does not need to write large amounts of code and the audience can comprehend what is
happening and is kept engaged. Complementing the sound with visual objects for every instrument adds value to this
understanding. When adding a restriction to the amount of lines and characters on screen the livecoder is forced to delete
parts and move on with the composition. By changing the musical notation system from one dimension (pitch) to two
dimensions (interval and octave) we can effectively use the same lists for multiple instruments and create coherence in
the musicality of the performance. Incorporating generative and transformational list functions assist in the algorithmic
composition process and are methods that must be included in a live-coders toolset. By making the environment functional
as a sequencer, the performer can immediately make sound after coding the first instrument. Exposing all instruments to
global variables for setting musical parameters (tempo, scale and random-seed) greatly improve musicality. Mercury has
already been used for many performances at various Livecoding events and proven itself as a performance tool.

8.1 Future work

Mercury is still in its prototyping phase and is a ongoing project. The environment will undergo many changes and additions
to the software in terms of programming efficiency, sound design libraries, visual libraries, algorithmic composition
technique libraries and more.

First of all more synthesizers will be added for more control of sounddesign while performing. All parameters of these
synths should allow to be modified through functions. A feature that allows for modulation of parameters with the
audio-signal of other instruments instead of looked-up values from a ring is also on the todo list. Besides that two extra
instruments, namely a looper and a poly_synth, will be added to the environment to be able to loop sounds and play chord
progressions with one instrument.

Secondly, on the subject of algorithmic composition, more complex techniques will be looked into to the environment.
Functions such as Markov-chain, L-systems, Game-of-Life and Attractors will be used as generative and manipulative list
functions. Furthermore, to allow for compositional structure on macro level looking into usage of breakpoint envelopes is
helpful, as described by Andrew Sorenson. The genera-two version for probability sequencing as demonstrated by Nick
Collins in his paper is also an interesting technique to generate variation in macro structure.

In the third place, when polyphony is made possible, the ring will get a multidimensional variation that can be use for chord
progressions or fuzzy logic lookup tables for variations in melodies.

Finally and most importantly an idea of genre-based programming as an overall abstracting layer is an idea that will get
attention for research and development. In this genre based paradigm, global parameters like tempo and scale, sound design
parameters, and many more variables will be changed or interpolated based on provided genre keywords. Allowing the
performer to immediately change it’s entire sound by only changing the genre while using the same code.
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