
CJing Practice: Combining Live Coding and VJing

Jack Purvis, Craig Anslow, James Noble
School of Engineering and Computer Science

Victoria University of Wellington, New Zealand
{jack.purvis, craig, kjx}@ecs.vuw.ac.nz

ABSTRACT

Live coding has typically focused on textual interfaces to interact with code, but this reliance on typing text impairs the
usability of live coding as a performance practice. VJing practice is limited by a lack of ৱne-grained content control and a
number of audiovisual tools are limited by their ability to be reused or shared in new performances. We propose the code
jo࠻ey practice (CJing), a new hybrid practice where a performer known as a code jo࠻ey (CJ) improvises, manipulates
and composites code to generate procedural graphics. CJing combines elements from live coding and VJing by oৰering
user interfaces that abstract upon the code and provide high level interactions. To illustrate CJing we introduce Visor, a
live coding environment for producing graphics in audiovisual performances. We present a typical Visor performance
scenario and discuss Visor’s underlying implementation details.

1 Introduction

Live coding is the application of live programming techniques to the performing arts (Tanimoto 2013). Live coding oৰers
the ability to improvise completely new content such as procedurally generated music or graphics by creative coding
over the course of a performance (Collins et al. 2003). Live coding environments tend to use simple user interfaces
centered around text editors. All interactions with the program must be performed by modifying the live code in this
textual interface. Parameters of a program must be modiৱed inside the live code and can only be assigned to discrete
values (Lawson 2015). Restricting interaction with the program only through textual interfaces is an aesthetic choice
of the live coding community¹ that impairs the usability of live coding by not aৰording interactions that allow for easy
exploration of the parameter space.

Video jockeys (VJs) are the visual counterpart to the musical disk jockeys (DJs); improvising graphics to accompany
music and create audiovisual marriages that engage the senses (Faulkner and D-Fuse 2006). VJs tend to work with pre-
rendered content such as looping video clips, and improvise their performances by layering and mixing them together or
applying parameterised video eৰects. Unlike live coding soऑware, VJing soऑware oৰers comprehensive GUIs made up of
many individual parameter controls, video clip preview windows and mappings to external hardware. VJing soऑware is
concerned with remixing existing content and typically does not allow for improvisation of new content like live coding.
डe VJ can control the speed and direction of playback or apply video eৰects but does not have ৱne-grained control
over the video content itself (Bergström and Loऔo 2008). Programmable behaviour is also limited as scripting oऑen
only appears where visual programming is supported such as in TouchDesigner² or VVVV³ but does not oৰer complete
control of the program behavior or straightforward live coding. डe Praxis LIVE environment oৰers a hybrid model for
live coding and visual programming that overcomes this limitation; maintaining that live code should be treated as a
ৱrst-class citizen and never at a disadvantage of built-in components (Smith 2016).

One study of VJ practice from an HCI perspective observed performer’s methods of expressive interaction and identiৱed
a number of characteristics that had an eৰect on their practice (Hook et al. 2011). डe observations made in this study
have in৲uenced the design of a number of customised audiovisual performance tools such as residUUm and ABP (Olowe,
Moro, and Barthet 2016; Correia 2015); developed following a user-centered approach (Correia and Tanaka 2014). While
these tools succeed in delivering ready-made procedural graphics that are straightforward to interact with, they are not
easily reused in other performances. In contrast, Bergström and Loऔo (2008) suggests that code should be organised into
reusable modules that can be shared among programmers and even non-programmers to allow for new performance
compositions.

¹hऔps://toplap.org
²hऔp://derivative.ca
³hऔp://vvvv.org

1

mailto:\protect \char "007B\relax jack.purvis, craig, kjx\protect \char "007D\relax @ecs.vuw.ac.nz


डere are a number of issues in existing performance practices and tools including the usability of live coding based on its
reliance on textual interfaces, the lack of ৱne-grained content control in VJing, and the di৳culty of reusing and sharing
content in audiovisual tools. In this paper we propose the code jo࠻ey practice (CJing), a new hybrid practice performed
by code jo࠻eys (CJs) that addresses these issues by combining elements of live coding and VJ practice. CJing improves
the usability of live coding by making use of interactions seen in VJing besides using a text editor. Code remains as the
main source of content generation however, allowing for ৱne-grained control of existing content and improvisation of
new content with the potential to be composited together and shared in reusable modules. In the next section we discuss
the key ideas that enable CJing and then illustrate the CJ practice with Visor, a live coding environment for producing
graphics in audiovisual performances. By focusing on usability, Visor aims to open up live coding to new audiences.

2 CJing Practice

Figure 1: Soऑware that supports CJing lies at the intersection of cre-
ative coding, live programming, and VJing related soऑware tools.

We propose the new code jockey practice (CJing) to
address the issues in existing performance practices
and tools: the usability of live coding, the lack of ৱne-
grained content control in VJing, and the di৳culty
of reusing and sharing content in audiovisual tools.
डe CJ practice is enabled when performance soऑware
supports three key ideas that encapsulate solutions to
these issues: User interfaces as an abstraction, complete
content control, and code as a universal language. We
can place CJing in context of its broader subject ar-
eas: creative coding, live programming, and VJing as
shown in Figure 1. CJing combines the expressive na-
ture of creative coding to generate content with live
code and the utilisation of visualisation and interface
techniques based on live programming; all placed in
the context of dynamic audiovisual performance as il-
luminated by VJing. While we focus on VJing which
produces graphical content, the same ideas could be
applied with DJing for producing musical content.

1. User interfaces as an abstraction

CJing employs user interfaces that abstract upon live code, detecting changes to the live code and providing contextual
interfaces to interact with the program. For example, a slider widget or hardware knob could manipulate parameters in
the program, removing the need for the CJ to inspect and manipulate the live code using textual interfaces. A CJing GUI
could also visualise the state of the program to improve the CJ’s awareness of the inner workings of their live code. It
is important that any incorporated user interfaces are only an abstraction of the live code, supplementing the program
rather than replacing or implementing unique behaviour that would render live code obsolete.

2. Complete content control

CJing should allow for complete control of procedurally generated content, enabling the performer to edit any part of the
ৱnal output. CJs can improvise content from scratch, remix existing content, and composite multiple content elements
together. For example, live coding provides the low level aspect of content creation and manipulation while VJing
provides the high level aspect of orchestrating the ৱnal output through organisation of layers and control of eৰects and
parameters. CJing combines the two, with all aspects of the ৱnal output accessible through code or manipulable through
user interfaces. Providing this kind of ৲exibility enables a CJ to make use of the strengths of live coding and VJing to
perform with procedurally generated content.

3. Code as a universal language

CJing uses code to generate content from scratch, constructing the ৱnal output primarily through the use of algorithms.
Code is ৲exible enough that it can allow for endless permutations of possible content but also precise enough that it
can allow an artist to produce a speciৱc aesthetic. Using code as a common language can enable an ecosystem to be
formulated and be treated akin to how looping video clips are treated in the VJ community. CJs can also use supporting
assets such as images, videos, or 3D models if they are speciৱed programmatically in code. Soऑware that relies on code
to instruct the ৱnal output is fundamental to the CJ practice. If a DJ mixes musical tracks and a VJ mixes video clips then
a CJ must mix code in their performances.

2



3 Visor

To illustrate CJing we developed Visor⁴, a live coding environment for producing graphics in audiovisual performances.
Live coding is performed in the Ruby language and graphical capabilities are provided by Processing (Reas and Fry 2006).
डe main features of Visor were developed with the key ideas of the CJ practice in mind, as shown in Table 1. डe Visor
interface shown in Figure 2 consists of a number of GUI components that make up the core user experience. डere is
the REPL editor (read-eval-print-loop) which is a space for performing actions that only occur once, such as deৱning
a variable or method. डese variables are displayed in the state management interface and can be mapped to hardware
devices for interactive manipulation. डe draw loop editor speciৱes the code that is run every frame. डe code in the draw
loop editor can access variables and methods deৱned by the REPL editor. Finally the tap tempo interface and FFT display
are interfaces for audio-reactive techniques that can be accessed from the live code. Each of these GUI components can
be moved and resized to allow the performer to customise the interface.

Figure 2: डe Visor user interface (leऑ) with corresponding rendered output (right).

3.1 Performance Scenario

We now describe the typical actions conducted by a CJ during a Visor performance with corresponding ৱgures 3-7. डe
ৱrst action is related to the conৱguration of the soऑware and only occurs at the beginning of the performance while the
remaining actions are conducted throughout the performance.

1. Conৱguration

Visor oৰers a number of seऔings to allow the CJ to conৱgure their performance. डese include conৱguring the audio
input device, MIDI device and the Processing renderer display seऔings. An option to overlay the draw loop code onto
the rendered output is also available, though the same code string can be accessed in the live code using a method.

2. Live coding

Live coding is performed by the CJ in the draw loop editor. डe draw loop code typed here is executed every frame as
per the draw method used by Processing. Syntax errors and run-time errors are shown in the editor by highlighting the
line the error occurred and presenting the error message. Figure 3 shows our live coded program that renders a ring of
geometric shapes.

3. State deৱnition

डe CJ can deৱne state in Visor using Ruby’s instance variables, indicated by the @ character at the start of a variable
name. State can be read and wriऔen to in both the draw loop editor and the REPL editor. Any code submiऔed from
the REPL editor is only executed once and is used for deৱning or modifying instance variables, methods, and classes.
Visor’s REPL is represented as a multi-line text ৱeld and the code is kept aऑer execution. Any CJ deৱned state in Visor

⁴hऔps://visor-live.github.io

3



is automatically visualised in the state management interface. Figure 3 shows how instance variables have been used to
deৱne state and methods in our live coded program; parameterising the number of shapes drawn, the size of the shapes,
and keeping track of how far the ring has rotated.

4. State manipulation by the state management interface

If a variable in the state is a number then a range is automatically estimated so the CJ can scrub through its parameter
space using a slider in the state management interface. डe CJ can also manually adjust the minimum and maximum
values of the range in the interface or by using the set_rangemethod in the live code. If a variable is not needed anymore
then it can be deleted from the interface or collapsed to take up less visual space. Figure 4 shows how ranges have been
assigned for variables in our live coded program and how the rendered result changes when the sliders are scrubbed.

5. State manipulation by MIDI controller

A CJ can also use a MIDI controller to interact with the live code. डe state of control sliders, knobs and note buऔon
events can be accessed using methods in the live code. For example, the interpolatemethod can be used in conjunction
with a slider method to control the value of a variable in the state. Figure 5 shows how the number of shapes drawn and
the size of the shapes are now mapped to two diৰerent sliders in our live coded program. डe rotation speed of the ring
is also increased when the ৱrst note buऔon is pressed down.

6. Tap tempo integration

डe tap tempo enables beat based behaviour in Visor. डe tap tempo interface allows the performer to specify a tempo
in BPM (beats per minute) that matches the music they are currently listening to. डe tempo is set by repeatedly hiऔing
the tap tempo buऔon in the tap tempo interface or by using a keyboard shortcut. डe tap tempo interface displays the
current BPM and visualises the temporal progress through the current beat. डe on_beat method can then be used to
trigger events in the live code each time a beat is hit. डe beat_progressmethod can also be used to access a normalized
value of the temporal progress. Figure 6 shows how the tap tempo has been integrated into our live coded program; each
time a beat is hit the ring will change colour and pulse outwards from the center of the screen.

7. FFT integration

Visor is grounded on real-time audio analysis techniques to produce audio-reactive content, removing any reliance on
the musician to provide speciৱcally formaऔed data on protocols like OSC that might not always be available. डe FFT
display visualises the current state of any live music in a frequency spectrum. डe display interface allows the performer
to make informed decisions about how the graphics should react to the music. डe display graphs audio amplitude
against frequency where the amplitude is graphed between zero and one. डe FFT data can be accessed in the live code
using methods such as volume which returns the overall amplitude of the audio or fft_range(n1, n2) which returns
the sum of the frequency bands in the range n1 to n2. Figure 7 shows how the FFT data has been integrated into the
draw_shape method in our live coded program; the ellipse diameter is now mapped to low to mid frequency sounds and
the rectangle width is now mapped to high frequency sounds.

Figure 3: Live coding in Visor. Draw loop editor (leऑ), REPL editor (center) and the rendered output (right). Note how state variables
have been deৱned using Ruby’s instance variables and are accessible from both the draw loop and REPL editors (e.g: @num_shapes on
line 9 in the draw loop editor and line 1 in the REPL editor).

4



Figure 4: State manipulation by the state management interface in Visor. REPL editor (leऑ), state management interface (center) and
the rendered output (right). Note how ranges have been assigned to the state variables using the set_range method (lines 5 & 6) and
how scrubbing the sliders has aৰected the rendered output.

Figure 5: State manipulation by MIDI controller in Visor. Draw loop editor (leऑ), MIDI controller (center) and the rendered output
(right). Note how sliders have been assigned to the state variables using the interpolate method in combination with the s1 and s2
(lines 9 & 10) methods and how moving the sliders has aৰected the rendered output.

Figure 6: Tap tempo usage in Visor. Tap tempo interface (leऑ), draw loop editor (center) and the rendered output (right). Note how
the on_beat and beat_progress methods (lines 3 & 15) are used and how the rendered output is aৰected.

5



Figure 7: FFT usage in Visor. FFT display (leऑ), REPL editor (center) and the rendered output (right). Note how the fft_rangemethod
(lines 13 & 15) is used to reference the data shown in the FFT display and how the rendered output is aৰected.

3.2 Design and Arࠫitecture

Visor is designed using a client-server architecture as illustrated in Figure 8. While both client and server applications
can be run on the same machine, the architecture opens up the possibility to run the client and server on diৰerent
machines. डis enables remote live coding where the performer live codes on one machine and the output is rendered
on another. डe client application is wriऔen as a desktop application using the Electron⁵ framework, enabling the use
of web technologies such as HTML, CSS and JavaScript. डe client application is responsible for handling all of the GUI
aspects including the draw loop editor and state management interface. डe server application is wriऔen in JRuby⁶, an
implementation of the Ruby programming language on the Java virtual machine. डe server application is responsible
for hot swapping live code, maintaining program state, managing MIDI devices, calling into the Processing API, and
keeping a handle to the Processing rendering window. डe client and server applications communicate using HTTP and
WebSockets.

Figure 8: Visor’s client-server architecture. डe client application consists of GUI components that interface with the server. डe
server application consists of classes that interface with each-other, the client, the Processing API and external inputs.

डe server application consists of a number of classes illustrated in Figure 8. डe sketch class supplies the draw method
that is called every frame and allows for calls to be made into the Processing API. Next there are the manager classes, each
manager is concerned with a speciৱc part of Visor’s internal behaviour such as the real-time FFT, tap tempo algorithm
or state management. Each manager provides callback methods to be called from the Processing sketch lifecycle. For
example, code to be called before the draw method is run can be speciৱed.

डe context is a class that encapsulates the live coded behaviour and state deৱned by the performer. डe context deৱnes
one method named draw that executes the live code. डe sketch class calls this draw method on the context every frame.

⁵hऔp://electronjs.org
⁶hऔp://jruby.org

6



Delegation is used to allow the context to access methods in the sketch and manager classes. Each manager can choose
to expose a number of methods to the context. For example, this allows the live code to access the on_beatmethod from
the tap tempo manager. Each manager can also expose its own internal state to the context and the client GUI. डis is
useful in the case of an internal variable that should be made accessible to the performer, for example the audio analysis
algorithm exposes the parameter that controls the amount of smoothing that is applied to the FFT data.

Visor makes use of Ruby’s metaprogramming features to enable live coding by redeৱning program behaviour and eval-
uating arbitrary code strings. डere are two sources of live code in Visor that are evaluated at diৰerent times. डe ৱrst
source is the draw loop code speciৱed in the draw loop editor of the client. डis code is placed in the drawmethod of the
context class and is executed every frame as per the Processing sketch lifecycle. Whenever the performer submits the
contents of the draw loop editor, the server application dynamically redeৱnes the context’s drawmethod to run the new
code, eৰectively hot swapping it with the previous code. डe second source of live code is from the REPL editor of the
client. डe REPL code is intended to be executed only once and so all of it is simply evaluated within the context class
before the next draw loop occurs.

State is handled in Visor by utilising Ruby’s instance variables. Live code is executed within the context class such that
any deৱned instance variables are placed on the context instance itself. डis means any state deৱned through the REPL
can be read from and wriऔen to in the draw loop code and vice-versa. डis state is persisted throughout the course
of the program, even between modiৱcations to the code. To enable manipulation of the state in the client, the state is
abstracted upon by the state manager. डe state manager uses re৲ection to read from and write to any deৱned state on
the context or any exposed state on managers. डe state manager observes changes to the state and sends them to the
client to be visualised in the state management interface. In turn, any changes to the state made in the state management
interface are sent back to the state manager to be applied to the context or a speciৱc manager. डe state management
interface supports manipulation of integer and ৲oating point data types using sliders where the range of each variable
is adjusted dynamically based on the variable’s observed values over time or by manual adjustment from the performer.
Manipulation of boolean data types is also supported using checkboxes. All other data types such as strings, arrays,
hashes or arbitrary objects are visualised using their string representations.

Due to the seamless integration between Java and Ruby in JRuby, Java methods can be transparently called from Ruby
code. डis means no bindings need to be speciৱed between Visor and Processing. Visor can utilise most of the Processing
API, enabling all kinds of graphics rendering including 2D and 3D primitives, text, images, shaders and 3D models.
Visor also extends Processing by making use of Ruby language features. Ruby supports the use of blocks which are
lambda expressions. A Ruby method can accept a block as an argument and perform useful operations before and aऑer
executing the block. For example, the with_matrix method makes use of blocks to replace the need to call push_matrix
and pop_matrix. डis is helpful as forgeऔing to call pop_matrix can cause unintended program behaviour. Listing 1
demonstrates the traditional approach with the Processing API while Listing 2 demonstrates the new approach.

push_matrix

translate 100, 100

rect 0, 0, 200, 200

pop_matrix

Listing 1: Traditional approach to handling the matrix stack
with the Processing API in Visor.

with_matrix do

translate 100, 100

rect 0, 0, 200, 200

end

Listing 2: New approach to handling the matrix stack using
a method that accepts a block as an argument in Visor.

Table 1: Visor’s main features and how they map to the three key ideas of the CJ practice.

Feature
User interfaces as an
abstraction

Complete content
control

Code as a universal
language

Live coding in the Ruby language. Y Y
Draw loop editor for updating the Processing draw
loop at run-time.

Y

REPL editor for interfacing with live coded state and
deৱning methods or classes.

Y

Automatic visualisation of live coded state. Y
Indirect manipulation of live coded state using a GUI. Y Y
Tangible manipulation of live coded state using a
MIDI controller.

Y Y

Customisable, reconৱgurable interface. Y
Interfaces for engaging with real-time audio-reactive
techniques: Tap tempo and FFT.

Y

7



4 Discussion

We now analyse Visor’s exhibition of the key ideas of the CJ practice and how the implementation of these ideas relates
to the issues identiৱed in existing performance practices. Visor’s state management interface allows for visualisation
and indirect manipulation of state, aligning with the idea of user interfaces as an abstraction and showing how the us-
ability of live coding can be improved by reducing reliance on typing interfaces. डe state management interface shows
Visor’s ability to orchestrate high level aspects of performance as manipulation of parameters using the GUI or hardware
controllers can directly aৰect the ৱnal output without the need to edit any code. Visor also enables low level aspects
of performance by supporting live coding of Processing in the Ruby language, enabling improvisation of new graphical
content from scratch or editing of existing content. डis support for live coding provides ৱne-grained control of the ৱnal
output that is not present in VJing soऑware. डis combination of low and high level interactions show how Visor sup-
ports complete content control. डe aspect of code as a universal language is supported as all content in Visor is produced
using code.

CJing improves the live coding practice by allowing it to be embedded as a process in larger soऑware, exposing the
practice to performers such as VJs who typically only utilise GUIs. डis is shown in Visor by the combination of live
coding and user interfaces to produce graphics in audiovisual performances. Based on the ৱrst author’s experiments
with Visor in live performance, we have identiৱed three potential use cases of Visor that cater for live coding and VJing
performers with varying levels of programming ability. डe ৱrst use case is the ability to live code a program from scratch
to produce graphics, catering for live coding performers. डe second is the ability to perform with an existing Visor
program that exposes parameters to be manipulated using the GUI or with hardware devices. डis second use case caters
for VJs and importantly, people with liऔle or even no programming experience. डis level of accessibility allows programs
that procedurally generate content to be utilised by performers without programming experience while also exposing
them to live coding. डis leads into the third use case which is the use of an existing Visor program as the starting point
for a performance. डis program can be remixed or built upon using live coding throughout the performance, catering
for both live coders and VJs with programming experience. Outside live performance, we believe Visor will also cater
for general creative coding audiences as it extends upon Processing with an improved user experience. डis is shown by
Visor’s ability to automatically provide interfaces for interacting with program parameters and the speeding up of the
development lifecycle due to the immediacy of live coding, both important qualities for creative coding.

5 Related Work

Visor shares traits with a number of existing live coding, VJing, and audiovisual performance tools. डese tools have
in৲uenced the proposed CJ practice or include features that enable CJing.

LiveCodeLab (Della Casa and John 2014) is a web based live coding environment that makes use of its own domain speciৱc
language called LiveCodeLang. LiveCodeLab allows for “on the ৲y” live coding where each keystroke automatically
updates the rendered output. डe rendered output of LiveCodeLab is a function of time and does not allow for any state
to be deৱned between frames, thus the performer does not need to be concerned about maintaining the state. Visor
takes an opposite approach and allows the performer to deৱne persistent state, enabling complex eৰects such as particle
systems that require lists of objects to be maintained over multiple frames.

Auraglyph (Salazar 2017) is a programming environment that allows for gestural interactions in musical performance.
Auraglyph makes use of touch interfaces to interact with visual objects that program the musical output, distancing
itself from textual interfaces when live coding. Visor makes use of similar user interface abstractions but instead of
direct control through gestures it makes use of the state management interface and mappings to MIDI controllers that
oৰer both indirect and tangible manipulation respectively.

Resolume⁷ is a popular VJ tool. Resolume supports audio-reactive eৰects such as audio-analysis based on a real-time FFT
where individual bands can be used to drive video eৰect parameters or a tap tempo functionality where the performer
can tap a keyboard shortcut to the beat of the music and drive video eৰects by the computed BPM. Visor incorporates
both of these audio-reactive features by visualising the FFT and BPM in the client GUI and allows the live code to access
them through exposed methods to generate audio-reactive content. While Resolume focuses on traditional video mixing,
Visor instead allows for improvisation of new content by live coding.

KodeLife⁸ is a tool that enables live coding of GLSL shaders for live performance. Shaders can provide highly complex
and engaging graphics with high performance due to making use of the capabilities of the GPU. Visor instead trades
performance for usability by making use of CPU based technologies like Processing to produce graphics. As Processing

⁷hऔp://resolume.com
⁸hऔps://hexler.net/soऑware/kodelife

8



is aimed at learner programmers it is easier for performers to pick up and does not require the shiऑ in mindset towards
parallel computing that shaders and GPU programming require.

Mother (Bergström and Loऔo 2008) is a set of tools that act as a middleware between Processing sketches to enable
VJ performance. Mother allows for the composition of multiple sketches that can be shared as reusable code modules.
Each sketch exposes parameters that Mother can interact with over OSC. Visor is similar to Mother in that it allows for
VJing with Processing but it extends upon Mother by allowing new content to be live coded, instead of just using pre-
wriऔen sketches. Visor does not support layering of diৰerent sketches through a user interface or for code to be shared
as reusable modules but these ideas have directly in৲uenced the proposed CJ practice and are planned as future work
for Visor. Mother is also mentioned as an example of a new creative coding practice called code bending (Bergstrom
and Loऔo 2015) which aims to refurbish existing soऑware by altering it to ৱt new purposes. Code bending is enabled by
integrating communication protocols into existing soऑware. For example, Mother uses OSC to allow Processing sketches
to communicate and be composited together during live performance. While CJing is also concerned with how existing
content can be modiৱed and composited together, it does not approach it from the perspective of networking multiple
programs but instead focuses on providing a single environment where content can be live coded in a common language.

Praxis LIVE (Smith 2016) is a hybrid IDE that allows for live coding of Processing in the Java language and oৰers visual
programming of node graphs where the source code of each node can be individually edited. Praxis LIVE exhibits
features of CJing by incorporating user interfaces that abstract upon live code, all while treating code as the main source
of content generation. Visor diৰers to Praxis LIVE in that live coding is performed in Ruby and that its user interfaces
focus on improving the usability of live performance, for example by providing audio-reactive tools by default and by
automatically exposing state in the client rather than having to manually type code or navigate visual nodes to see it.

JRubyArt⁹ is a wrapper for Processing that enables creative coding in the Ruby language like Visor. JRubyArt allows
for live coding where a source code ৱle is watched for changes over time and a terminal provides REPL interaction.
Visor instead opts for a GUI with code editing and interactive features built-in speciৱcally for live coding in audiovisual
performances. Sonic Pi (Aaron 2016) is another live coding environment that supports live coding in Ruby. Developed
with a client-server architecture, Sonic Pi is used to live code music. While Visor shares a similar soऑware design it
instead focuses on producing graphics and so to a certain extent Visor is a visual counterpart to Sonic Pi.

डe role of HCI in live performance has been explored by Hook et al. (2011) who observed a number of characteristics of
expressive interaction in VJ practice. डese characteristics are summarised by Correia (2015) as: reconऎgurable interfaces
(the ability to reorganise the controls to ৱt a particular performance); haptically direct (using hardware controllers and
having a physical connection to the system); parallel interaction (simultaneous control of multiple parameters); constrain-
ing interaction (the importance of constraints and focus); immediacy (immediate response from the soऑware);manipulable
media (desire for powerful and varied manipulation of media); and visible interaction (to make the performer’s interac-
tion visible to the audience). Visor presents all of these characteristics except for that of visible interaction. While Visor
supports the ability to project the source code on top of the graphics or utilise the code string in the live code, it does
not oৰer a complete representation of the performer’s process due to the introduction of user interfaces hidden behind
the laptop screen. डe whole interface could be projected to the audience, but that may detract from the quality of the
performance. डis issue highlights the need to make a distinction between live coding and CJing practice: while live
coding is utilised by CJing, some aspects of live coding such as code projection may not make sense in the new practice.
For example, VJs utilise interfaces that prevent errors in their performance as a maऔer of usability while live coders are
more likely to embrace errors as shown by the projected code.

6 Conclusion

We have introduced CJing, a new hybrid practice that addresses issues in performance practices and tools, including
the usability of live coding based on its reliance on textual interfaces, the lack of ৱne-grained content control in VJing,
and the di৳culty of reusing and sharing content in audiovisual tools. CJing combines elements of live coding and VJ
practice based on the ideas of user interfaces as an abstraction, complete content control, and code as a universal language.
To illustrate CJing we have introduced a new live coding environment called Visor that oৰers a new way to improvise
graphics in audiovisual performances with a new method for live coding of Processing using the Ruby language. While
we have discussed the CJ practice from the perspective of live coding graphics in Visor, we believe that the same principles
could be applied to music. User interfaces from DJing soऑware could be used instead of VJing soऑware to in৲uence the
design of a live coding environment for producing music.

डe ৱrst author has performed with Visor at multiple meetups and three live performances with positive audience
feedback and interest from other performers. डe ৱrst author is continuing to develop Visor to further illustrate CJing.
Planned future work for Visor includes support for a system to share code, emphasising the idea of code as a universal

⁹hऔp://monkstone.github.io/about

9



language by enabling the reusability and sharing of Visor programs. Further ideas from VJing soऑware will also be
implemented, such as the ability to organise content into layers that can be reordered, mixed with other layers, or have
video eৰects applied to them. Support for layers in Visor would provide high level interactions based on user interfaces
that abstract upon live code, further emphasising the ideas of user interfaces as an abstraction and complete content control.
Finally, we intend to perform user testing on Visor to evaluate its usability and beऔer understand how user interfaces
might improve live coding.

References

Aaron, Sam. 2016. “Sonic Pi – performance in education, technology and art.” International Journal of Performance Arts and Digital
Media 12 (2): 171–78.

Bergstrom, Ilias, and R. Beau Loऔo. 2015. “Code Bending: A New Creative Coding Practice.” Leonardo 48 (1): 25–31.

Bergström, Ilias, and Beau Loऔo. 2008. “Mother: Making the Performance of Real-Time Computer Graphics Accessible to Non-
Programmers.” In Re) Actor3: eࡂ irdࡂ International Conference on Digital Live Art Proceedings, 11–12.

Collins, Nick, Alex McLean, Julian Rohrhuber, and Adrian Ward. 2003. “Live Coding in Laptop Performance.” Organised Sound 8 (3):
321–30.

Correia, Nuno N. 2015. “Prototyping Audiovisual Performance Tools : A Hackathon Approach.” In International Conference on New
Interfaces for Musical Expression, 12–14.

Correia, Nuno N, and Atau Tanaka. 2014. “User-Centered Design of a Tool for Interactive Computer-Generated Audiovisuals.” In
International Conference on Live Interfaces.

Della Casa, Davide, and Guy John. 2014. “LiveCodeLab 2.0 and Its Language LiveCodeLang.” In Proceedings of the 2nd Acm Sigplan
International Workshop on Functional Art, Music, Modeling & Design, 1–8.

Faulkner, M, and D-Fuse. 2006. VJ: Audio-Visual Art and VJ Culture: Includes DVD.

Hook, Jonathan, David Green, John McCarthy, Stuart Taylor, Peter Wright, and Patrick Olivier. 2011. “A VJ Centered Exploration of
Expressive Interaction.” In Proceedings of the CHI Conference on Human Factors in Computing Systems, 19:1265–74. ACM.

Lawson, Shawn. 2015. “Performative Code: Strategies for Live Coding Graphics.” In Proceedings of the First International Conference
on Live Coding, 35–40.

Olowe, Ireti, Giulio Moro, and Mathieu Barthet. 2016. “residUUm : user mapping and performance strategies for multilayered live
audiovisual generation.” In International Conference on New Interfaces for Musical Expression, 271–76.

Reas, Casey, and Ben Fry. 2006. “Processing: programming for the media arts.” AI & SOCIETY 20 (4): 526–38.

Salazar, Spencer. 2017. “Searching for Gesture and Embodiment in Live Coding.” In Proceedings of the International Conference on Live
Coding.

Smith, Neil C. 2016. “Praxis LIVE - hybrid visual IDE for (live) creative coding.” In Proceedings of the International Conference on Live
Coding.

Tanimoto, Steven L. 2013. “A Perspective on the Evolution of Live Programming.” In Proceedings of the 1st International Workshop on
Live Programming, 31–34.

10


	Introduction
	CJing Practice
	Visor
	Performance Scenario
	Design and Architecture

	Discussion
	Related Work
	Conclusion
	References

