
Live Patch / Live Code

Charles Celeste HUTCHINS
University of Kent

celesteh@gmail.com

ABSTRACT

Modular synthesiser live-patching has gradually been accepted into the big-tent of live coding practice, due to a number
of natural similarities to computer-based live coding. ese similarities especially include flexibility, complexity and
sudden stops. In my own performance of live-patching, I have sought out other areas of digital live coding practice
to apply to the modular synthesiser. ese include starting from a blank slate, showing my cables (sometimes with
projection), graph changes and the use of conditional triggers to create audio events.

1. Introduction

e definition of live code has been gradually growing over the years of contemporary practice. In 2008, McLean strug-
gled to name any non-digital live coding practice. (McLean 2008)en, in February 2011, there was a very brief discussion
on the TopLap email list as to whether live patching modular synthesisers was an analogue form of live coding (Rohrhu-
ber 2001). By June of that year, Nick Collins was treating the question as seled in Leonardo, listing live electronics band
Loud Objects as an example of live coding. (Collins 2011) He notes, when talking about live algorithms, ‘Computers
remain a primary touching point, but let us also keep in sight examples that center on human rule-making independent
of digital computability.’ (Collins 2011) Given this very broad potential pool of music-making activity, live coding has
become extremely inclusive. or Magnusson referred to ‘herding cats’ in the title of one his papers, as a reference to
this wide diversity. (Magnusson 2014) Indeed, I heard a joke recently that it would be faster to make a list of all the things
that aren’t live coding, rather than the things that are.

2. Synthesiser as a Live Code Platform

Given how open live coding has become, it may become useful to discuss points of commonality between divergent live
coding practices. In many ways, live synthesiser patching seems different from live coding with a computer, given the
vastly different interface. ere is a greater amount of tactility, which, to me at least, feels closer to playing a traditional
musical instrument than creating an algorithm. It is also worth noting that the synthesiser is specifically designed for
music making, unlike a computer, and thus has a limit on the kinds of operations and calculations it can do. In this way,
a synthesiser is both a chainsaw and an idea. (TopLap 2010)

us chainsaws vs ideas become less of a binary opposition and more a continuum. Tools, such as chainsaws, are
perceived as extensions of the body of the user. (Cardinali et al. 2009) My experience of playing the tuba very much
matches this. By contrast, my experience of text-based computer live coding feels abstract and unembodied. Live-
patching the synthesiser lies in between. e afore-mentioned tactility does give it some feelings of embodiment. But
plugging in cables and deciding how to route signals primarily involves abstract decision-making. Playing a patch,
therefore, is chainsaw-like. Making the patch is idea-like.

2.1. Commonality

A modular synthesiser, therefore has many points of similarity with digital live coding practice. e specific design
of a synthesiser for only music making may not parallel computer hardware, but the specificity certainly parallels the
way some live coding languages have developed. While you can’t use your synthesiser to check your email, this is also
impossible in several live-coding languages and with early analogue or other non-digital computers. And, indeed, the
modular synthesiser does have a general purpose element within the musical sphere. Common practice, when I was an

mailto:celesteh@gmail.com


undergraduate, was to spend time in the studio, carefully making the perfect sound. is is also how I was taught to
write code.

Historically, modular synthesisers do not seem to have been seen as live electronics systems to the same extent as were
some particular pieces, such as Runthrough by David Behrman (1971), which is realised live with DIY electronics. e
programme notes for that piece state,

No special skills or training are helpful in turning knobs or shining flashlights, so whatever music can
emerge from the equipment is as available to non-musicians as to musicians . . .. ings are going well
when all the players have the sensation they are riding a sound they like in harmony together, and when
each is appreciative of what the others are doing (Behrman 1971).

e piece is based entirely on discovery and has no set plan or wrien score (ibid). e piece-ness relies on the equipment.
Scot Gresham-Lancaster describes pieces like this one as “direct use of electronics as a ‘score’ ” (Gresham-Lancaster 1998).

Historical live electronic pieces like Runthrough do differ from live-patching in that a modular synthesiser is designed to
be a more general purpose tool and its use does not imply a particular piece. Interestingly, however, some live coding
platforms, like ixi lang, have been compared to graphic scores due to their use of space (Magnusson 2011) and thus do
have a certain piece-ness about them. However, unlike ixi lang and Runthrough, understanding the interaction between
synthesiser modules is not designed for ease of use for non-musicians. It is a specialist skill which does imply that
expertise is possible. However, the idea of finding a sound and following it is similar to live electronics and all of these
practices make use of improvisation. ese are all points of commonality between live patching and digital live coding.

Additionally, the interface differences between modular synthesis and computer languages do not create as large a gap as
it might at first seem. While synthesiser modules are not like text-based code, neither are all languages. Scheme Bricks,
a live coding language by Dave Griffiths (2012) is an example of a coding language that relies very heavily on graphic
elements rather than dense lines of text. A step closer to the synthesiser patching interface (and not uncoincidentally
so) are the patching languages MAX/MSP and Pd. A version of one of these languages which had only a set and limited
number of unit generators and control generators would not be logically different than a modular synthesiser. Even the
model of making connections is the same.

2.2. Complexity

Both digital systems and analogue modular systems allow a user to create a graph of unit generators to generate sounds
electronically. In both systems, the graphs and their control mechanisms can quickly grow in complexity, past the point
where the player can easily understand what is happening. e late Click Nilson hints at this in his 2007 paper. In
a footnote, he quotes a personal communication from Julian Rohrhuber, ‘e main difficulty of live coding I find is to
keep aware of the relation between text and sound - this is a balancing act between the ability to change and the ability
to understand a certain situation’ (Nilson 2007) While certainly live patching lacks text, there is some critical number
of patch cables beyond which it becomes increasingly difficult to keep all the connections in mind. Patch cables turn
into a kind of electronic spaghei, where even the colour codes of my cables are not helpful in comprehending what is
connected to what. I aempt to compensate for this by physically tracing my hands along the wires, but even that has
its limits. Given the extreme flexibility for feedback and chaos with analogue signals, the routing can become intensely
complex. Pd programmers are familiar with a similar effect of a visual spider web forming on screen.

is complexity also leads to a situation analogous to ‘crashing’, wherein the synthesiser suddenly stops making sounds
in performance, in a way that can be difficult to predict. Experimenting with an oscillator’s ‘hard sync’ switch during a
set may lead to a sudden and interesting timbre change or a sudden silence. Similarly, long running LFOs can drop below
a threshold where they unexpectedly cause things to fall silent. It is oen not at all obvious what has caused the sound
to stop. In situations where there are a large number of wires and multiple modes of interconnected sound-generation,
it can be more beneficial during performance to treat a sudden, unexpected silence as a stopping point and start anew
with new sounds aer a brief pause to remove cables.

Although it would be impossible to exactly replicate a previous live patch in performance, I do sometimes try to repeat
steps that have lead to a ‘crash’ in past situations, as they make a sudden and final-sounding way to end. I’ve seen
many digital code-based live coders end sets through crashes and at least some of them do court disaster on purpose.
Click Nilson has wrien of the desirability of a ‘”code out” ending of deliberate coded crash’. (Nilson 2007) And some
live coding languages have embraced crashes as language functionality. ixi lang, for example, has a built-in ‘suicide’
command, which creates a percentage chance of crashing on each bar. (Magnusson 2012)



3. TopLap Influences

Many of the points of similarity above are inherent in live patching, due to a synthesiser’s evolution from the analogue
computer. However, the courting of crashes is one way in which my practice has been specifically influenced by the live
code movement and the TopLap Manifesto in particular. (TopLap 2010)

3.1. Show us your screens

Like blank slate digital live coders who start positioned behind a laptop with a blank screen, I start with all of my patch
cables hung around my neck. us we both experience a short pause from starting the set to starting making sound. I
also emulate the ‘show us your screens’ directive, so I turn my synthesiser at an angle to the audience, so the majority
of friendly experiencers can see my actions to at least some extent. is orientation is a compromise position such that
my instrument is largely visible, but I am not turning my back on the audience. For many lines of sight, it is probably
more visible than simply standing in front of the synthesiser. I have experimented also with using a web cam to project
a video image of the synthesiser as I patch.

In order to make things more transparent, at the Live Code Festival in Karlsruhe in 2013, I paired this with a manually
triggered set of slides of super-imposed text. ese started with a description of what colour cable I intended to use for
what kind of signal. Copying the Royal Conservatory of the Hague’s coding system, I projected that I would be using blue
for Control Voltages, black for Audio Voltages and red for Triggers. In addition, I projected the name and a photograph
of the module that I was using when plugging into it for the first several connections I made.

While audience feedback was generally positive about these good intentions, it was difficult to find a web cam angle that
was not blocked bymy body as I used the instrument. Evenmore disappointing, the combined low quality of myweb cam
and of the projector meant that the different cable colours were not visible to people watching the video display. In low
light situations, such as one oen has on stage, black cables oen become completely invisible. Although a beer camera
may solve colour issues, I have instead reconsidered what information I should be giving to audiences. AlthoughMcLean
notes that programmers can take steps such as ‘using a language with a simplified syntax, choosing highly descriptive
variable names and so on’, (McLean 2008) I have never seen a show-us-your-screens live coder project any explanations
as to their syntax colouration or what various commands mean.

3.2. Graph Changes

When discussing approaches to digital live coding, Magnusson writes,

e argument . . . is that a true ‘liveness’ requires that the performer is not simply manipulating pre-
wrien code in real time, but is actually writing and modifying algorithms during the execution of the
program. is is arguably a prerequisite of live coding, as simply running code and changing parameters
in prewrien code is more comparable to operating buons, sliders, and knobs on a screen interface or a
MIDI controller. (Magnusson 2014)

is demand for algorithm modification also appears in Collins’s live coding analogues, wherein he describes several
examples of changing the algorithm mid-play. In one such example, specifically, ‘a live-coding twist would be to perturb
the algorithm halfway through’. (Collins 2011) Perhaps, however, it would be useful to take a step back and examine
what is meant by ‘algorithm’ in an analogue context.

Plugging in cables creates a unit generator graph. e output of one circuit is connected to the input of another, eventually
creating a complicated sound generation and control process. is is the creation of an algorithm, just as combining unit
generators in a patching language creates an algorithm. However, playing this patch, by twiddling knobs on a synthesiser
is exactly like operating knobs on a MIDI interface. Indeed, the physical interface is ‘pre-wrien’. is is not to say that a
physical interface is necessarily alien to live coding. Marije Baalman’s live-coded piece, Wezen-Gewording, uses sensors
aached to her hands, to capture the physical gesture of her specifically performative gestures and of her typing code.
(Baalman 2014) However, seing something up and relying solely on parameter changes, while musically valid, is dubious
under the heading of ‘live coding.’ erefore, Baalman changes her code over the course of the piece. And in my practice,
I do not rely on the algorithmic rules established at the start of the set. Instead, I ‘perturb the algorithm’ by seing up
and switching to parallel signal paths.



Figure 1: An image I projected in Karlsruhe.



3.3. Decisions

Many computer programs involve decision making. is is not strictly necessary for audio processing, which only needs
follow a signal graph. However, I seek to include decision making in my patches, in order to create stronger similarities
to coding practice. My synthesiser includes a MOTM 700 voltage controlled router – a module that specifically does
binary signal switching based on a comparison of two signals. However, although this module is an obvious choice for
seeking to automate some decisions, this kind of behaviour is also found via triggers and envelope generators. When
one signal changes, this changes another signal. is seems roughly analogous to an if statement. Because I oen use
both random generators and FM chaos, I cannot always predict when a trigger will occur. us the synthesiser picks
up a degree of autonomy and behaves in an unpredictable way, increasing a distance between it and a chainsaw. e
instrument may be a tool, but a patch is more like an expression of an idea. (TopLap 2010)

3.4. Seduling

Many live coding languages offer the possibility of scheduling future events and some have argued that this is therefore
a necessary component of live coding or live coding-related practice. In essence, this is a situation where the performer
decides to invoke or stop a particular algorithm at a future time. A synthesiser user who wishes to mimic this behaviour
has several options, including step sequencers or using LFOs to trigger future events or graph changes. Aswith deccisions,
one can make the timing less predictable by using random generators or chaos. is is not something I tend to use either
in my live coding or my live patching practice, but is certainly possible to implement.

4. Conclusion

While discussing live coding metaphorically, McLean wrote, ‘We can think of live coding in the sense of working on
electricity live, re-routing the flows of control . . ..’ (McLean 2008) In modular synthesiser patching, this practice is not
a metaphor. Flows of control are literally plugged and unplugged. Complex systems develop and are replaced by new
complex systems. It’s no longer necessary to retreat into our imaginations to experience live coding without a computer.

References

Baalman, Marije. 2014. “Wezen – Gewording.” Performance; STEIM. https://www.marijebaalman.eu/?p=404.

Behrman, David. 1971. “Runthrough.” In Sonic Arts Union. LP; Mainstream Records. http://www.ubu.com/sound/sau.
html.

Cardinali, Lucilla, Francesca Frassinei, Claudio Brozzoli, Christian Urquizar, Alice C Roy, and Alessandro Farnè. 2009.
“Tool-Use Induces Morphological Updating of the Body Schema.” Current Biology 19 (12): R478–R479.

Collins, Nick. 2011. “Live Coding of Consequence.” Leonardo 44 (3): 207–211.

Gresham-Lancaster, Scot. 1998. “e Aesthetics and History of the Hub: the Effects of Changing Technology on Network
Computer Music.” Leonardo Music Journal: 39–44.

Griffiths, Dave. 2012. “Scheme Bricks.” http://github.com/nebogeo/scheme-bricks.

Magnusson, or. 2011. “Algorithms as Scores: Coding Live Music.” Leonardo Music Journal 21: 19–23.

———. 2014. “Herding Cats: Observing Live Coding in the Wild.” Computer Music Journal 38 (1): 8–16.

———. 2012. “Ixi Lang.” Accessed March 3. http://www.ixi-audio.net/ixilang/.

McLean, Alex. 2008. “Live Coding for Free.” Floss+Art. London: OpenMute: 224–231.

Nilson, Click. 2007. “Live Coding Practice.” In Proceedings of the 7th International Conference on New Interfaces for Musical
Expression, 112–117. ACM.

Rohrhuber, Julian. 2001. “[Livecode] Analogue Live Coding?” http://lists.lurk.org/mailman/private/livecode/
2011-February/001176.html.

TopLap. 2010. “ManifestoDra.” http://toplap.org/index.php/ManifestoDraft.

https://www.marijebaalman.eu/?p=404
http://www.ubu.com/sound/sau.html
http://www.ubu.com/sound/sau.html
http://github.com/nebogeo/scheme-bricks
http://www.ixi-audio.net/ixilang/
http://lists.lurk.org/mailman/private/livecode/2011-February/001176.html
http://lists.lurk.org/mailman/private/livecode/2011-February/001176.html
http://toplap.org/index.php/ManifestoDraft

	Introduction
	Synthesiser as a Live Code Platform
	Commonality
	Complexity

	TopLap Influences
	Show us your screens
	Graph Changes
	Decisions
	Scheduling

	Conclusion

