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ABSTRACT

Collaborative problem solving is a key methodology for tackling complex and/or contentious problems. The
methodology is supported by computer and communication systems that bring human solvers together with
computational agents and provide clear protocols for exploring and rating alternative solution approaches.
However, these systems can be challenging to use due not only to the complexity of the problems being
solved  but  the  variety  of  abstractions  involved  in  managing  the  solution  process,  e.g.,  problem
representations, collaborations, and strategies. This paper offers new ideas to help the human users of such
systems to learn and work more effectively.  It also suggests how problem solving may sometimes be carried
out in performance contexts similar to those of livecoding improvisational music. Most important here is
the identification of seven forms of liveness in problem solving that may heighten a solving team’s sense of
engagement.  Common  themes  among  them  are  increasing  solvers’  awareness  and  minimizing  latency
between solver intentions and system responses.  One of the seven livesolving forms involves solvers in
tracing paths within problem-space graphs. This and the other six forms derive from experience with a
system called CoSolve, developed at the University of Washington.

1. INTRODUCTION

1.1 Motivation

Problem solving has somewhat different interpretations in different disciplines.  In mathematics it usually
consists of finding "answers" in the form of numbers or mathematical expressions, and it sometimes means
coming up with a multi-step proof of a formal proposition.  In business administration, problem solving
typically refers to the decision making that owners and CEOs do in order to manage their operations or
expand their markets.  In psychological counseling, problem solving refers to the resolution of personal
relationship conflicts, family strife, or depression.  In engineering, problem solving may require the design
of  a  machine or part  that will  satisfy  a set  of  specifications.   In  spite of  having somewhat specialized
connotations in particular fields like these, people solve problems almost continuously during their lives,
some of them very minute and subconscious such as the avoidance of puddles and stones when walking,
and  some of  them more  deliberate,  such as  deciding what  groceries  or  brands of  items to  buy at  the
supermarket. Our aim is to support solving in some of these areas, but primarily situations in which there is
enough value in formalizing the problem that people will be willing to consciously think about the problem
in its  formalized representation.   Puzzles  often figure prominently  in  discussions of  computer  problem
solving, and I use them here because they facilitate conceptual explanations.  However, I mention a variety
of other problems, such as understanding climate change, to clarify other points.

Three reasons for supporting problem solving are (1) to help get important problems solved such as climate
change, poverty, or world peace, (2) to help teach people how to solve problems in new and potentially
better ways, and (3) to facilitate the art and performance of problem solving -- e.g., "livesolving."  In our own
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group, a principal motivation is to find new ways in which technology can further empower people in
problem  solving.   This  paper  focuses  on  forms  of  problem  solving  that  resemble  livecoding  or  live
programming, as these terms have come to be known. Liveness in problem solving promises to contribute to
either the effectiveness with which human solvers can accomplish the solving itself or the effectiveness with
which the humans can artfully  demonstrate solving activity.  Livesolving is  a  new avenue by which to
improve people's ability to solve problems and to share the share the solving process.

1.2 Definition

Livesolving refers  to  problem  solving  activity  performed  under  circumstances  associated  with  live
programming: (a) the use of computational affordances that respond in real-time, (b) the potential presence
or virtual presence of “consumers” such as audience members at a performance, and (c) improvisational
elements of creative synthesis and non-retractability.  Whereas live programming typically involves the
editing of program code, livesolving involves the manipulation of problem structures such as formulations
of problems (“problem templates”), state variables, and fragments of solution paths.  By supporting and
studying livesolving, we seek a better understanding of best practices in the design of methodologies and
tools to support humans in complex, creative work.

2. PRIOR WORK

2.1 Theory and Systems for Problem Solving:

When artificial intelligence research started in the 1950s, it paid particular attention to problem solving.
The "General Problem Solver" (GPS) developed by Allen Newell,  J.  C.  Shaw, and Herbert  Simon (1959),
involved  articulating  a  theory  of  problem solving that  was  subsequently  developed  and used  both  for
designing computer agents and for modeling human problem solving (Simon and Newell 1971; Newell and
Simon 1972).   I refer to the core aspects of the theory as the "Classical theory of Problem Solving" (and just
"Classical Theory" below).  Numerous researchers have contributed to the theory, and a number of books
have explained the ideas well (e.g., Nilsson 1972,   Pearl 1984).  The primary motivation for all this work was
to be able to build intelligent, automatic problem solving agents.  The secondary motivation was to find a
new theory for human problem solving.

Others,  including my group,  have had  a  different  motivation:  to  support  human problem solvers  with
appropriate computer technology.   At the Swiss Federal Institute in Lausanne, a mixed-initiative system
was  developed  that  supported  a  human  problem  solver  in  the  formulation  and  solution  of  problems
involving combinatorial  constraints  (Pu and Lalanne 2002).   In  my own group,  the focus has  been  on
supporting teams of solvers who collaborate on the solution to problems, with the assistance of computers.
A system we developed, called CoSolve, embodies the classical theory and gives a solving team web access
to a shared session that includes an explored subset of a problem space (Fan et al 2012).  Two user roles are
supported by CoSolve: "solving" and "posing." The solvers work in small teams to construct "session tree"
objects that represent realizations of portions of problem spaces.  Figure 1 is part of a screen shot from
CoSolve showing a session tree for a Towers-of-Hanoi puzzle.  The posing role in CoSolve engages users
called posers in "scaffolded programming" by providing online forms that hold fragments of Python code to
represent the components of a problem formulation. Related to posing are the activities of understanding
and transforming information (e.g., see Russell et al, 1993, and Mahyar and Tory, 2014, on sensemaking and
Kearne et al, 2014, on ideation.)

CoSolve was designed and built after a previous prototype, called TSTAR, proved to have so much latency
for sharing of solving activity within a team that solvers did not feel that they were really working closely
together when solving (Tanimoto et al 2009).   CoSolve, however it managed to reduce the latency, still had
enough latency that the solvers would sometimes get annoyed, and we are working on a successor system



in order to further reduce such latency.   It is the latency issue, for the most part, that connects the topic of
computer-supported problem solving with livecoding.

2.2 Forms of Live Programming:

Reducing  the  latency  between  coding  (editing  code)  and  execution  (seeing  the  results)  has  been  a
fundamental goal of live programming (Tanimoto 1990, 2013).  The various ways in which this takes form
depend on the style of programming and the available technologies.  Without going into details here, we
can simply  say  that  live  programming has  two key  aspects:  (1)  editing  the  running program without
stopping  it,  and  (2)  reducing  the  latency  between  code  editing  and  execution  of  that  code  to  an
imperceptibly small interval of time. 

Livecoding usually refers to a particular form of live programming in which the programming is part of a
musical  performance,  the  music  being  generated  by  the  code  as  the  code  is  modified.   This  kind  of
programming is a form of improvisational performance, and it would have this character even if the output
were changed from music to dynamic visual art.  Livecoding is of particular interest to those who study the
psychology of computer programming, not only because it is an unusual context for programming, but
because  it  puts  the  programmer  rather  than  the  language  or  the  software  at  the  center  of  attention
(Blackwell and Collins 2005). Later in this paper, I'll consider the related case where the output is problem
solving state, rather than music or graphics per se.

2.3  Cognitive State of Flow

Bederson  (2004)  has  argued  that  human-computer  interfaces  that  support  cognitive  tasks  should  be
designed to keep the user in a psychological state of "flow." Such a state can be characterized as one of
intense focus as a task progresses. In order to support such user focus, the interface must be designed to
avoid undue latency and to anticipate the possible next states of user attention, providing some of the
information  that  will  be  needed  prior  to  any  delays  due  to  communication  networks  or  computer
processing.

3. FORMS OF LIVESOLVING 
By considering the several ways in which users of our CoSolve system interact with it, one can identify
corresponding ways to reduce the latency of those interactions.  In this section, seven forms of livesolving
are described that derive from this analysis.

CoSolve engages human solvers in posing problems, initiating solving sessions, and solving the problems.
In this paper, I neither address the posing process nor the session initiation process, and thus the focus is on
solving.  Solving in CoSolve consists in the deliberate selection of existing states in a session, the selection
of operators to apply to them, and in some cases,  the selection or specification of parameters to those
operators.  One "turn" consists of selecting one state already in the session, selecting one operator, and if the
operator takes parameters, selecting and/or writing the values of those parameters.  When the user inputs
this information, typically over the course of several seconds in time, the choices are relayed to the server
which computes a new state and sends it back to the client.  The new state, added to the session by the
server, is then drawn on the client screen as a new part of the tree representing the session so far.

Here are seven forms of livesolving in the context of a system that supports collaborative problem solving.
They are discussed in greater detail in later sections. Not supported in CoSolve (with the possible exception
of #5, livesolving presentations), we are building them into a new system code-named "Quetzal."  The order
in which the forms of liveness are listed here may seem arbitrary,  but corresponds to my estimates of
importance to design of next-generation general solving systems. 



The first promotes thinking strategically at the level of problem spaces, which without the immediacy of
visualization  and  live  interaction  is  conceptually  difficult  for  solvers.  The  second  dispatches  with  any
unnecessary latency in adjustment of parameters, something needed in solutions of many problems.  The
next two can affect the relationships between a solver and her/her collaborators and/or audience members.
Livesolving form number 5 is associated with the design of dynamic objects such as animations or computer
programs. Form number 6 means that solving decisions that might be considered finished can be revisited
without  necessarily  undoing all  the  work done since.   Finally,  livesolving form 7 directly  supports  an
experience of flow that offers a potentially exciting new modality of solving that might be effective for some
problems or as a training aid for human solvers.

1. "Drawing and co-drawing solution paths."  The user traces a path (or two or more users co-draw a
path) through a display of the problem-space graph.  The system supports the drawing process and limits
the trace to legal paths,  according to the problem specification.  The turn-taking time of CoSolve-style
interaction is reduced to an almost imperceptible delay.  The possible challenge for the user of staying on a
legal path can be limited by the system through intelligent interpretation of the user's drawing intent, as
explained later.

2.  "Live  parameter  tuning."   One  part  of  the  operator-application  turn  described  above  is  the
specification of  parameter  values.   CoSolve  requires  that  the  user  make a commitment to  a  particular
parameter vector prior to operator application.  This means that the user cannot easily make a series of
small adjustments to a parameter value using feedback from the system.  Live parameter tuning means that,
upon operator  selection,  the system will  display a new state showing the consequences of  the current
parameter  values  without  requiring  a  commitment  to  those  values,  and  furthermore,  there  is  instant
updating of the state and its display as the parameters are adjusted using appropriate input widgets such as
sliders.

3.  "Synchronous co-solving."   Whereas CoSolve's  group awareness feature allows each solver to
become aware of other users'  edits to the solving-session tree through small graphical indicators, actual
updates to the user's session-tree display do not occur until the user requests them.  On the other hand, with
fully  synchronous  co-solving,  any  team  member's  edit  to  the  solving-session  tree  is  automatically
propagated to each team member's view of the tree with only a small, deliberate delay introduced so that a
smooth animation can provide continuity between the old and new views.

4. "Livesolving presentations."  This is solving a problem, using computer technology, in front of an
audience or video camera. While it doesn't require any new technology per se, it can benefit from a variety
of standard technologies and affordances, such as means for highlighting, annotation, bookmarking, and
linking to multimedia facilities.

5. "States alive."  In CoSolve, states in a session are shown as nodes in a tree, with static images as
graphical  illustrations  of  each  state.   Additional  details  of  state  information  are  available  to  users  by
clicking, after which JSON code is displayed.   The restriction that states be presented in this manner means
that certain kinds of problems, such as animation design problems, cannot be solved in the most natural
manner.  To improve that, states can be permitted to have dynamic displays.  Thus, if the state represents a
dynamic process, such as a computer program, then states-alive liveness will allow the user to observe,
within a session tree  or  problem-space  visualization,  a  collection of  running animations,  reflecting the
running programs the states represent.

6. "Ancestor modification." In CoSolve, each turn of operator application is a commitment. States can
only be added to a session, not deleted.  Furthermore, existing states cannot be modified.  That limitation
simplifies session management in collaborative contexts, and often there is no problem having a few extra
states around, representing evidence of solver exploration prior to finding a good path.  The difficulty comes



up when a long chain of operator applications hangs off of an ancestor that needs a change.  CoSolve treats
the ancestor as immutable, and in this sense of no longer supporting interaction, "dead."  With ancestor-
modification liveness, edits to ancestors are permitted, and they have the effect of raising such states from
the dead and letting them be modified.  There are two alternative policies for this.  One is that the ancestor
is immediately cloned, with the original remaining immutable.  The other policy is that there is no clone,
and the ancestor itself will be modified.  Modification may involve simply re-specifying or re-tuning the
parameter values used in the operator that created the ancestor.  However, it may also involve a change
requiring the use of an entirely different operator and possibly new set of parameter values as well.  In
either case, a change to the ancestor may require either of two kinds of changes to its descendants: (a)
updating of the state variables affected by the changed parameter(s),  (b) pruning of descendant subtrees due
to violations of operator preconditions by the new ancestor or by other updated states. 

7. "Driving an agent." Whereas the first form of livesolving (drawing and co-drawing solution paths)
achieves its dynamics by the users' hand or stylus motions, in driving-an-agent liveness, the solving process
proceeds with a form of momentum (speed, direction in the problem space, restricted deceleration) that
means steering decisions must be made at a rate that avoids the wrong turns and dead ends that would be
made by the agent's default behavior.  Computer agents for problem solving come in many forms, and the
most obvious application of this form of liveness works with a depth-first-search agent.  However, it can
apply to almost any solving agent that can accept input over time.  To make this form of liveness effective, a
good display must be provided to the driver (the user or users) so that each decision can be made on the
basis of the best information available at the current point in the search.

4. LIVESOLVING WITH FINITE PROBLEM SPACES    
In this and the following two sections, I discuss the seven forms of livesolving in more detail.  I have chosen
to categorize four of them roughly according to the nature of the problems they might be applied to and the
other three by their "social nature."  However, this classification is primarily for convenience of presentation
rather than something necessitated by the affordances themselves.

4.1 Characteristics of Finite Problem Spaces

A finite problem space is one in which the number of possible states for a solution process is bounded.  For
example, in a game of Tic-Tac-Toe, a reasonable formulation leads to a problem space with 5478 legal states.
(This rules out states having more Os than Xs, and many others, but not duplicates modulo symmetries.)
Although mathematical  finiteness does not strictly imply enumerability by a computer  in  a  reasonable
amount of time, we will consider, in bringing liveness to solving these problems, than the space of states can
be mechanically explored, fully, and that the time required to do this is taken care of in advance of the
livesolver's encounter with the solving process.  The livesolver's job might therefore be to demonstrate the
selection of a good sequence of states from the problem's initial state to one of its goal states.  The fact that
the states have been precomputed before livesolving begins does not necessarily mean that the solution has
been found in advance (although that is possible).

4.2 Drawing the Solution Path by Tracing over a Problem-Space Graph.

Our first form of livesolving, drawing and co-drawing solution paths, is a good fit for working in finite
problem spaces.   The finiteness means that it might be feasible to determine a state-space map for the
problem in advance, and to offer it to the livesolver(s), as a substrate, for solving by drawing.

As an illustration, let's consider the Towers-of-Hanoi puzzle.  Part of a CoSolve session tree for a 3-disk
version of the puzzle is shown in Fig. 1.  The initial state is at the root of the tree, and states created by
making moves from it are shown underneath it.  Now let's consider a version with 4 disks. The state space



for this problem has 34 = 81 states.  The state-space graph for this problem contains one node for each state
and an edge between nodes ni and nj (corresponding to states si and sj) provided there are operators that
transform state si into sj and sj into si.   Various layouts for this graph are possible.  Figure 2 shows a layout
constructed by assigning to each node three barycentric coordinates determined by assigning values to the
presence of the various disks on each of the three pegs. The smallest disk is counted with weight 1; the next
with weight 2; the third with weight 4; and the fourth with weight 8.  The initial state of the puzzle is
plotted at the lower-left vertex of the equilateral triangle, because the weight of all disks is on the first peg.
Similarly, the other two vertices of the large triangle correspond to states in which all the disks are on the
middle peg or all the disks are on the right-hand peg.

There are six operators in a standard Towers-of-Hanoi problem formulation.  Each is of the form "Move the
topmost disk from Peg i to Peg j."  In Figure 1, the spatial direction in which a node transition is made
corresponds directly to the operator involved.  For example, from the initial state, moving the smallest disk
from Peg 1 onto Peg 2 is shown by the line segment going from the node marked 0, diagonally up and to the
right.

Livesolving with this state-space graph is tricky, because the solver would like to move directly from the
lower-left vertex to the lower-right vertex, and yet no direct path exists.  In fact, the shortest 

Figure 1.  Portion of a CoSolve session tree for a 3-disk Towers of Hanoi puzzle. A solver generates one
state at a time by making a selection of a node and an operator.



Figure 2.  State-space graph for the 4-disk Towers-of-Hanoi puzzle used as a substrate for livesolving by
drawing and co-drawing solution paths.  A shortest solution path (the "golden path") is shown.

solution path involves some counterintuitive moves of disks from right to left now and then.  Thus, there is
an opportunity for livesolvers to develop skill at solving these puzzles and demonstrate the skill using this
mode of livesolving, much as Rubik-cube experts like to show how quickly they can spin the faces from a
random position and get all the marks on each face of the cube to have a uniform color.

One of the challenges for those who formulate problems is to come up with appropriate graph layouts (that
we call problem-space visualizations) to permit this sort of solving by drawing.  Finiteness of the problem
space is a help, but that is not sufficient to make such layout easy.  We discuss the challenges of layout
further in the section on Livesolving in Infinite Problem Spaces.

4.3 "States-Alive" Liveness

In a puzzle such as the Towers of Hanoi, each state represents a static snapshot -- a possible configuration of
disks on pegs that might reached in the course of attempting to solve.  A static image is a suitable graphical
representation for a solver working on the problem. On the other hand, there are problems that involve
dynamic entities, such as the problem of designing an animation clip or creating a computer program that
simulates bouncing balls on a table.  With states alive, each state displayed in a solving session is backed by
its  own  generative  process,  typically  a  running  program  operating  in  a  separate  thread  of  control.
Particularly  when  the  solver  is  comparing  alternative  states  in  order  to  select  one  for  additional
development, seeing the alternatives, "in action" can potentially improve the quality of the decision and
have other benefits, such as making more apparent the properties of the states, not only for the solver, but
for a livesolver's audience, if there is one.

One of the simplest examples of states-alive liveness occurs when the problem is to design an animated GIF
image,  and alternatives are displayed in  their natural  form -- as  animated GIFs.   An obvious potential
drawback is that such displays, with multiple animated GIF images, can be annoying to users, because they
tend to be visually busy and distracting, especially when the important decisions about which state to



expand,  etc.,  have already been made.   The answer should  be that  the states-alive facility  comes with
suitable controls for disabling and enabling the live displays that go with such states.

The use of separate threads of computation to support each of multiple states being shown simultaneously
on the screen could easily consume available computation cycles or memory.  Thus it is likely to work best
when relatively few states will be displayed in this mode at a time.  Finiteness of the problem space may
help, at the very least, and policies or controls that limit the number of live states to a dynamically changing
working set,  would be appropriate.   For  example the live displays may be limited to one state and its
immediate children, or to the states along one short path in the state-space graph.

4.4 Live Feedback During Solving

Crucial to maintaining a sense of flow to a user is providing timely feedback.  In problem solving with
CoSolve, the system generates a state display image each time the user creates a new state.  With solving by
drawing, the user should be receiving at least two forms of feedback: the display of the path as just drawn,
plus the state visualization for the state most recently reached on the path.  The time between user selection
or specification of a new current state and its subsequent display is "state-display latency." By reducing this
time to a few milliseconds, a system can better support a solver's  experience of being in the flow. The
finiteness of the problem space suggests that the state visualizations could all be precomputed and stored as
properties of the nodes of the graph.  This would allow showing these visualizations with low state-display
latency, even if the user draws paths through the graph quickly.

In addition, feedback about the current node reached may include the display of values computed from the
state:  heuristic evaluation function values,  for example.   Even if these values or the state visualizations
themselves are not precomputed, they may be computed lazily, scheduled for computation as soon as the
node is added to a path under consideration.  Yet the livesolver is not required to wait for them before
exploring  further.  When  computing  resources  are  scarce,  these  visualizations  should  be  computed
strategically, to maximize the sense of orientation in the state space.  For example, every other state along
the path might be displayed if not every state can be.

5. LIVESOLVING IN INFINITE PROBLEM SPACES

5.1 Working with Parameters of Operators.  

If the states of a problem have continuous variables in them, such as a temperature or speed, then the
problem's state space is inherently infinite1.  The space could be made finite by limiting such variables to a
fixed set of values, but that may not always be appropriate.  A consequence of having continuous variables
in operator parameters is that the selection of appropriate parameter values can easily become a "flow
killer" in a problem solving system.  In order to avoid this, live parameter tuning should be supported.  To
use this, a user selects an operator and the system may respond by creating a new state using default values
of the parameters.  At the same time, controls such as sliders, dials, or image maps appear, as appropriate for
each of the parameters required by the operator.  The user then adjusts the parameter values, watching the
new state update immediately to reflect the adjustments.  A variation of this involves having the system
present not just one new state, but a sample set of new states corresponding to a default set of values for
each of the parameters.  For example, an operator that adds a piece of furniture to a living-room layout may
have three parameters: furniture type, x position, and y position.  The x and y positions are values from a
continuous range; the system can provide a sample set of (x, y) pairs that are generated as a cartesian
product of a sample set for x with a sample set for y. 

1 Of course, real number are restricted in most computers to a finite set of rationals, but this is an artifact of
implementation rather than problem modeling.



In addition to the use of default parameters and fixed sample parameter vectors, intelligent agents may take
a solver's specification for a sampling distribution to use as the basis for parameter value sampling.  An
example of this is the specification of a "beam" of parameter values: a collection of tightly spaced values
within a narrow subrange of the parameter's full allowable range. 

5.2 Ancestor Modification

A variation of the live parameter adjustment affordance when creating new states (as described above) is to
permit this in more cases.  One of these is to change the parameters of an old state.  If the state has no
children, this is equivalent to what we have already discussed.  If the state has children, then these children
will generally be affected by any change to this or any ancestor.  For each descendant of a modified state,
any of several cases may apply: (a) no change, either because that influence of the change is blocked by
some  other  ancestor,  between  the  changed  one  and  the  descendant  in  question,  (b)  changes  to  the
descendant propagate down, with no violations of operator preconditions on the path between the ancestor
and the descendant, or (c) at some state between the ancestor and the descendant, the precondition for the
operator originally used to create the state is now violated.  In this third case, the logical update to the
session tree is to remove the subtree whose root's operator precondition now is violated.  However, that can
be quite disruptive to the solving session, particularly if that deletion happens as an unintended accident of
parameter adjustment.  Flow may be better maintained by avoiding the possibility of such an accident.  This
can be done by automatically cloning any ancestor that has been selected for modification, along with all its
descendants.  If this policy is too expensive in terms of state duplication, a less costly cloning policy is to
clone only when a descendant is about to be deleted, and then to remove the clone if the parameter is
adjusted back in a way that removes the precondition violation. While ancestor modification complicates
the implementation of the system, it offers substantial flexibility to the solver, allowing the "resurrection of
otherwise unmodifiable states from the dead."

5.3 Path Drawing Without Precomputed Graphs

A problem space that is infinite cannot have its entire graph realized in advance or at any time.  However, a
portion of it may be computed in advance, and more of it may be computed during a solving session.  The
following challenges may arise:

The time required for the system to apply an operator and produce a new state may cause enough latency to
threaten the user's sense of flow.  When this is the case, the sense of liveness can sometimes be saved by (a)
suitable display of  partial  information,  progressively as  the new state is  computed,  or  (b)  covering the
latency by posing questions to the user or offering more readily available alternatives.

The mapping of states to layout positions may cause collisions among realized states.  While the Towers of
Hanoi graph of Figure 2 has a clear minimum spacing between adjacent nodes, in an infinite problem space,
this may be difficult, if not impossible to achieve.  The fact that parameters of operators, and state variables
themselves, may take on values in continuous ranges (e.g., real numbers between 0.0 and 1.0), means that
states may differ by arbitrarily small differences in any state variable.  If the designer of a problem-space
layout wishes to have a minimum separation of nodes on the screen of 25 pixels, then two fairly similar
states s1 and s3 might be positioned at x1 = 100 pixels and x2 = 125 pixels, respectively.  If s1 and s3 differ
simply because there is a state variable v whose value in s1 is v1 and whose value in s3 is v3, (where v3 - v1 is
close to zero), there still may exist a state s2 having its value of v half way between v1 and v3.  Now where
should the layout place the display of s2?   It could dynamically adjust the layout and double the spacing
between s1 and s3,  in  order  to  place  s2 directly  between them without  violating the  minimum spacing
constraint.  However, this raises the problem of layouts changing during the solving process, which may
increase the cognitive load on the solver.   If layout positions are not to change during the session, then



collisions on the screen are likely, as the realized portion of the infinite state space grows, and interface
mechanisms are required to allow seeing and selecting any of the items that pile up on each other.  One
approach for this is  to have multiple layouts or projections,  with the user in charge of moving among
different views of the same problem space.  Another approach is to allow the layout to be locally dynamic,
with techniques such as force layout, but overall mostly static.

Hand-in-hand  with  more  sophisticated  visualization  techniques  for  the  problem  space  are  more
sophisticated capabilities for the drawing tool supporting the livesolving.  As the user draws a path through
the 2D view of the problem space, the path must intelligently adapt to be a legal path through the actual
problem space which may be of arbitrary dimension.

System policies supporting intelligent drawing assistance may include on-the-fly search, so that the state
pointed to by the solver is automatically connected by a shortest path to the nearest landmark state, unless
the distance from such a state exceeds a threshold set in the current drawing policy.  Landmark states are
defined by the solver by clicking on them and marking them during the course of solving.  Another drawing
policy that can be used is for the system to deal with drawing ambiguity (i.e., which state the user intends to
move to next) by maintaining a set of nodes to represent the possible next state; the ambiguity may be
gradually removed through additional user hints, or the 

  
(a)                                                                            (b)

Figure 3. Visualizations for the Climate Conundrum problem:  (a) session tree, and (b) problem-space graph.
The graph layout supports solvers' understanding of progress towards the goal, but it is poorly suited to path
drawing, due to its densities of nodes and edges.

ambiguity may be permitted to persist, with the understanding that the system will eventually end up with
multiple possible candidate solution paths.

Even if a problem-space visualization fails to provide a clear sense of direction or sense of proximity to any
landmarks in the problem space, the ability to explore the space by drawing a path can still have appeal to
livesolvers.  At the very least, a graphical representation of the paths explored can provide a kind of visual
session  history  whose  topology  (e.g.,  tree  structure)  indicates  alternatives  tried  and  points  at  which
backtracking or branching occurred.

5.4 Effects of Dynamic Realization of the Problem Space.

Real-time solving with full state displays may be impractical, due to high state-display latency in complex
problems.  To keep the solver in the flow, it may be possible to use techniques such as (a) planning via
homomorphic problem spaces (Pearl 1984), (b) low resolution visualizations on fully computed states, or (c)



sampling  policies  for  visualizations  –  e.g.,  every  other  state  on  a  path  is  visualized,  or  every  nth  is
visualized, or a state is visualized to degree  f(k) if its importance exceeds  k.  Alternatively, visualizations
may be computed lazily with different priorities, so that with enough time, a full path is shown in detail, but
rapid  work  by  a  human  will  be  supported  by  having  the  most-important  visualization  and  state-
computation work performed first.

6. SOCIAL LIVESOLVING
In this section, I discuss three of the aforementioned livesolving forms: synchronous co-solving, livesolving
presentations, and driving an agent.

6.1 Synchronous Co-solving 

Synchronous co-solving is  collaborative solving activity in which a single representation of the solving
session is shared among the solvers.   When solvers work from geographically distant locations, the shared
representation is accessed via client views that must be updated by the system. CoSolve's mechanism for
these updates pushes notifications to solvers that changes have been made and then updates a solver's view
if and when the solver clicks to request the update.  Our new system Quetzal, on the other hand, pushes the
new views themselves as soon as any team member makes a change.  The potential exists for such changes
to be disrupting to individual solvers,  as, of course,  too many cooks can spoil  a broth. This is  true for
groupware in general (Gutwin et al 1995).  But were synchronous co-solving not to be supported, close
collaboration would be more difficult. We compensate, in Quetzal, for the potential disruption, by smoothly
animating each of the changes to the session-tree view over a 2-second period.  The potential disruption can
also be reduced by clearly labeling incoming nodes as new and identifying their authors using avatars,
names, or color coding.

If a solving environment gives to agents the status of "team member," then the potential for disruption is
amplified.  Agents can move too quickly to create new material in a solving session, and also, there is a high
likelihood of  their  work being considered  to  be  mostly  garbage.  Consequently,  special  affordances  are
required for managing the contributions of agents, such as running them in sandboxed subsessions.  New or
novice team members can also be managed with such devices.

6.2 Livesolving Presentations 

Livesolving presentations share several elements with livecoding performances. First, the presence of an
audience demands that there be an effect element of communication during the activity; the audience is
expected to derive something from the experience, be it entertainment, education, or other information.
Furthermore, livecoding is traditionally improvisational.  In order for livesolving to also be improvisational,
the  tools  must  support  extemporaneous  decision  making  and  short  response  times.   In  music,  live-
performance improvisation involves real-time commitment to musical elements that cannot be retracted
(unlike studio recording session in which mistakes can be corrected). A jazz musician who hits a "wrong"
note (wrong in the sense of unintentional or off-sounding) will typically turn this bug into a feature by
developing it, recontextualizing it, and perhaps, gracefully abandoning it.  A livesolver who arrives at a dead
end in the problem space should likewise make the bug into a feature by building a narrative context around
the dead-end that makes it a natural part of exploring the problem space. The audience might judge the
performance either in terms of speed to solution or in terms of "narrative richness" or honesty in exposing
the solvers'  thought process.  Computer support for this form of livesolving may include the display of
graphical signals to the audience that new states are being explored (e.g., green) backtracking is occurring
after reaching a dead-end (red) or that unforced backtracking is occurring (e.g., orange).  Music livecoders
often include colored code highlighting in their  editors to reflect  re-evaluation,  syntax errors,  or  other
conditions.



6.3 Driving an Agent

Driving an agent is listed here under social livesolving, but it may or may not involve relationships that feel
social.   The relationship  between a  driver  and  a  car  is  not  traditionally  a  social  one.   However,  with
automatic driving, the user and driving agent may have a relationship involving communication in spoken
English, which may seem social.  Other social relationships in driving exist, too: driver-navigator, driver-
backseat driver.  In the case of direction-finding, the navigator in a car may be a person or a Garmin GPS
unit.  In livesolving, agents may be making decisions about the order in which states of a problem space are
explored,  but  a  user  driving that  agent  may steer  the  agent  to  alter  the default  decisions.   When the
operators take parameters, the choice of parameter values may be a large enough task that it can be shared
by multiple drivers.  One livesolver determines the type of furniture to be placed in the living room while
another selects an (x,y) position for it by clicking or touching on the room plan.  Computer support for
driving an agent means offering interfaces to livesolvers appropriate to the particular kind of agent being
driven.

7. DISCUSSION
In this section I address three questions.  First is "Where did the forms of livesolving come from?".  The
second is "What can make solving live?"  The reason to ask this is to offer a review of issues already raised,
but in a slightly different light. Third is "How does livesolving compare with livecoding?"  This question is
prompted by the theme of the conference.

7.1 Where did the forms of livesolving come from?

After  our  group  built  two tools,  TSTAR and CoSolve  in  order  to  facilitate  deliberate,  human problem
solving, the question arose of what more we could do, through providing computer technology, in order to
support human problem solving.  Our two approaches involved (1) looking for ways to reduce latency in
our current computer-mediated solving process, and (2) looking for alternative kinds of solving experiences
that could be supported by the same classical theory and underlying support engine.  The ideas took shape
in the course of trying to answer the other two questions in this section.

7.2 What Can Make Solving Live?

Solving a problem, with help from others, including computers, can feel live when the solver experiences
the kind of feedback expected when working among a group of engaged individuals.  Having a conversation
in which one's partner responds promptly and thoughtfully is  one example.   Working with a tool  that
performs its assistance without undue delay is another.  The goal of our work is to enable solvers not only to
experience liveness, but to achieve cognitive flow -- a state of mind in which mental transitions from one
idea to another proceed at a rate that is fast enough to inhibit distractions from setting in, yet slow enough
to permit comprehension and the development of good judgment.  The seven forms of liveness presented
above offer some means to this end.  However, there are surely many other factors that affect the ability to
achieve flow that crop up in reality such as the solver's freedom from external anxieties, the time available,
his  or  her  motivation to solve  the problem at  hand.   We also require  that  the  problem be  formulated
according to the classical theory, and the formulation process is a topic for future work.

7.3 Comparing Livesolving and Livecoding

Livesolving and livecoding, as presented here, are closely related.  An obvious difference is that livecoding
depends on code editing as its fundamental activity.  Livesolving depends on problem-space exploration via
operator application.  From a theoretical perspective, they are equipotent.  Livecoding in a Turing-complete
language can result in an arbitrary computable function.  Livesolving in a suitable formulated problem space
can result in the composition of an arbitrary computational object, such as any computable function.  Either



can be done in a performance context, and either can be used to generate music or any other computable
process.  The difference, then, is in the style of interaction that the solver or coder has with the system.  The
ways of thinking about the process, also, tend to differ.  In a typical livecoding performance, there is not any
goal to end up with a masterpiece of code at the end of a performance; rather the code evolves in order to
generate the music required at each point in time, and at the end of the performance, the final version of the
code may simply generate silence.  In livesolving, however, there usually is an understood goal state, and
there are criteria for success and failure related to it.

8. CONCLUSIONS
Problem solving using computers is an activity similar to programming in that it involves computational
thinking,  yet  different from programming because of  the structures  and affordances typically provided.
Exploiting the classical theory of problem solving, existing systems such as the University of Washington's
CoSolve facility have shown how computational resources can be used by human solving teams to solve
problems in ways that garner certain advantages.  These systems, however, don't adequately support solvers
in reaching their full potential as solvers. Here, I have presented seven forms of liveness in problem solving
to help overcome those obstacles.  Some of these forms involve how solvers specify the exploration of the
problem space, while others involve the ways in which they interact with other solvers on the team or with
an audience.  Future work on livesolving will involve evaluation, comparisons to software design patterns,
extensions to posing, the design of agents and agent interfaces, and enabling the scaling of facilities for
large teams, complex problems, and more intelligent and fast computational support.
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