
Patterns of User Experience 
in Performance Programming

Alan F. Blackwell
University of Cambridge Computer

Laboratory
Alan.Blackwell@cl.cam.ac.uk

ABSTRACT
This paper presents a pattern language for user experiences in live coding. It uses a recently defined analytic
framework that has developed out of the Cognitive Dimensions of Notations and related approaches. The
focus on performance programming offers particular value in its potential to construct rigorous accounts of
the experiences of both performers (the live coder) and audiences. Although developed as an account of live
coding, the findings promise to be relevant to a wider range of performance programming contexts, which
could benefit from analysis in terms of live coding, if a systematic framework of this kind were available.
The paper  provides a  detailed analytic  commentary,  drawing on the broadly diverse body of  prior  live
coding practice, but using music live coding as a central running example. The findings demonstrate the
advantage of rigorous analysis from an independent theoretical perspective, and suggest the potential for
future  work  that  might  draw on  this  pattern  language  as  a  basis  for  empirical  investigations  of  user
experience, and as a theoretical grounding in practice-led design of new live coding languages and tools.

1. INTRODUCTION
The concept of  software patterns – construction techniques that can be applied in many situations – is
extremely well known in the software engineering industry, regularly applied by professionals and widely
taught to undergraduates (e.g. Larman 2004, Holzner 2006). However, Blackwell and Fincher have argued
(2010) that there has been a fundamental misunderstanding in the way this concept is being developed and
applied. They observed that the software engineering researchers who originally coined the term had not
intended it to be a catalogue of construction techniques, but rather based it on an analogy to the writing of
architect and design philosopher Christopher Alexander (1978). 
Alexander created the term  pattern language to describe his systematized observations of the ways that
people actually use and inhabit their built environment. He argued that buildings are shaped as much by
their  users  as  by  materials  and  construction,  and  that  it  is  useful  for  architects  to  have  a  systematic
description of the things users experience. An example is the pattern “light on two sides of a room”. This
might be achieved, for example, when an architect, builder or home renovator installs glass windows in two
different  walls.  However,  the  essence  of  the  pattern  is  a  description  of  the  experience  of  light,  not  a
prescription for achieving it (for example, by specifying how to place windows, what they are made out of,
or  even  whether  they  are  windows  at  all).  Alexander’s  pattern  language  is  a  systematic  collection  of
experience descriptions, not a set of rules for construction.
The goal of this paper is to apply an analogous approach to the study of the human context in which live
coding is  done,  in order to achieve a systematic collection of  descriptions of the user  experiences that
constitute live coding. Such a collection is potentially valuable both as a design resource (drawing attention
to new opportunities for live coding tools or languages) and a critical resource (providing a vocabulary with
which to describe the tools and languages of today).
The application of Alexander’s pattern language to software was originally proposed by Kent Beck and
Ward Cunningham (1987) and popularized in the form that is familiar today by the “Gang of Four”: Gamma,
Helm, Johnson and Vlissides (1994). The original analogy between software engineering and architecture
was clearly expressed by Richard Gabriel as follows:

Habitability is the characteristic of source code that enables programmers, coders, bug-fixers, and
people coming to the code later in its life to understand its construction and intentions and to
change it comfortably and confidently.  It  should be clear that, in our context,  a “user” is a



programmer who is called upon to maintain or modify software; a user is not (necessarily) the
person who uses the software. In Alexander’s terminology, a user is an inhabitant (Gabriel 1993,
emphasis added)

Subsequent extension of this work to user interface patterns (e.g. Tidwell 2005) has abandoned this insight
from Beck, Cunningham and Gabriel that Alexander’s ideas could be used to understand contexts where ‘a
“user” is a programmer’ as in the quote above. In most user interface ‘”patterns”, the user does not get to be
a programmer, and does not have the creativity and control that arises from programming. Blackwell and
Fincher (2010) argue that this situation may have arisen from misunderstanding of the original analogy,
which has become more widespread as other “patterns” publications rely on secondary sources rather than
the original publications by Beck and Cunningham. However,  live coding offers an ideal opportunity to
draw away from the (mis)understanding that may be implicit in the UI patterns community, and instead
refocus on the creative power of programming, and on source code as the primary medium of interaction,
rather than secondary to some other UI. Live coding is especially interesting because of the contrast it offers
to  mainstream  software  engineering  (Blackwell  and  Collins  2005).  By  considering  Alexander’s  (and
Gabriel’s) application of design patterns, the goal of this paper is to understand what it is that makes live
coding  distinctive,  in  relation  to  more  conventional  software  engineering,  and  to  other  kinds  of  user
experience.
The remainder of this paper is structured as follows.  This introduction is fleshed out,  first with a more
precise characterization of performance programming, followed by more detail of Blackwell and Fincher’s
critique of conventional software and user interface “patterns”, and then an introduction to their alternative
pattern language as it applies to live coding. The main body of the paper describes that pattern language in
detail, as the main contribution of the paper. A closing discussion reviews the validity and potential value of
this approach.

1.1 The User Audience of Performance Programming 

This  paper  takes  a  particular  interest  in  the  frequent  interpretation  of  live  coding  as  performance
programming.  Although  live  coding  can  be  interpreted  in  other  ways  (in  particular,  as  a  software
engineering  method,  as  an  educational  strategy,  or  as  a  creative  medium),  the  performance  context
introduces the key dynamic between the performer and audience.  This dynamic immediately highlights
many of the trade-offs that are inherent in the varieties of user experience captured by pattern languages. In
particular, it is understood that performers and audiences have different experiences – a factor that is often
neglected in the implicit universalism of software engineering methodology, and in mainstream theoretical
research into principles of programming languages.
The performance context addressed by this paper can be understood primarily in terms that are familiar
conventions of art-coding – where the code is written by a performer on stage, with a projection screen
displaying the code as a stage backdrop, and the audience are either dancing (at an algorave), or sitting (in a
concert/recital  setting).  This  conventional  layout  might  be  varied  slightly,  for  example  when  the
performance  accompanies  a  conference  talk,  when  the  live  coder  is  providing  background  music  at  a
function, or in a mixed genre variety show or cabaret context. However, the observations in the paper are
also  applicable  to  other  presentation  formats  that  maintain  the  performer/audience  distinction,  but
replicated in digital media. In particular, video of live coding performances, whether recorded in one of the
settings already described, or created specifically for online distribution, attracts larger audience numbers
than concerts and algoraves.
The findings from this paper are also relevant to a further, perhaps even more widely viewed, online genre –
the programming screencast. Screencasts are often recorded from a live ‘performance’, but typically focus
on demonstrating software skills, or the features of software development tools, rather than on recording a
stage performance. There is already substantial overlap between these genres and live coding as understood
at this conference, for example in Sam Aaron’s tutorial introduction How to Hack Overtone with Emacs1. Of
course screencasts of art-coding are a minority interest by comparison to “performances” of programming
with mainstream tools, whether tutorials such as Data Driven Programming in Haskell2 or exhibitions of skill

1 https://vimeo.com/25190186
2 https://www.youtube.com/watch?v=045422s6xik



by popular coding celebrities such as Minecraft developer Notch3. The recent launch of a dedicated site
(www.livecoding.tv) for performances of this kind suggests that this trend will continue to increase.
In the remainder of the paper, I assume for simplicity of presentation that the performer is creating music
through live coding. I therefore use examples from music to illustrate the kinds of information structure
involved in code. However, it is intended that these observations should apply equally to other live coding
environments controlling other media – for example, my own Palimpsest system for live coding of visual
imagery (Blackwell 2014), as well as the games, data analytics and software engineering examples above.

1.2 Patterns of User Experience

A key assumption of the presentation in this paper is that conventional uses of the term “pattern language”
in software  engineering and in human-computer  interaction  are  based  on a  misunderstanding of  Beck,
Cunningham and Gabriel’s original analogy between programming and architecture (Blackwell and Fincher
2010).  This  paper  is  therefore  not primarily  concerned  with  “software  design  patterns”  as  presented  in
Gamma et al (1994) and many other texts. Blackwell and Fincher (2010) argue that those texts are concerned
mainly with construction techniques, rather than user experiences. This paper is particularly not concerned
with  “user  interface  patterns”,  as  presented  in  many  HCI  texts  and  resource  sites  (e.g.  http://ui-
patterns.com/) which collect examples of specific construction techniques by analogy to software design
patterns. As noted in the introduction to this paper, Blackwell and Fincher (2010) argue that this literature
continues the misunderstanding of pattern languages, through a focus on construction of user interfaces
rather than the user experience of programming. Although it has been necessary to cite this literature in
order to avoid further misunderstanding, this paper will not make any further reference to either software
patterns or user interface patterns literatures.
Blackwell and Fincher’s proposal for the creation of a pattern language of user experience in software was
modeled closely on the Cognitive Dimensions of Notations (CDs) framework originally proposed by Thomas
Green  (1989),  greatly  expanded  by  Green  and  Petre  (1996),  and  incrementally  developed  with  many
collaborators since then, including the present author and many others. Several alternative perspectives on
CDs have been proposed, introducing corresponding approaches to tangible user interfaces (Edge 2006),
collaborative representations (Bresciani 2008) and several others. Blackwell and Fincher argued that the goal
of  CDs  was  far  more  closely  related  to  Alexander’s  pattern  language,  in  that  it  aimed  to  provide  a
vocabulary with which the designers of programming languages and other complex notations could discuss
the usability properties of those notations. An example CD was “viscosity” – the experience of using a
system in  which  small  changes  are  unreasonably  hard  to  achieve,  like  “wading  through  treacle”.  The
vocabulary was grounded in previous literature, but was a “broad brush” description rather than focusing
on details  of  the kind that can be measured  in controlled laboratory  studies,  or  time-and-motion style
exploration  of  efficiency in use.  The popularity  of  the framework arose in  part  because  labels  such as
“viscosity”  captured  intuitive  feelings  that  were  recognized  by  many  programmers  as  aspects  of  their
everyday experience, but aspects that they had not previously had a name for.
In the 25 years since Green originally proposed the Cognitive Dimensions of Notations framework, it has
been highly influential as an approach to understanding the usability of programming languages. The paper
by Green and Petre (1996) was for many years the most highly cited original paper to be published in the
Journal of Visual Languages and Computing, and a 10th anniversary issue of that journal reviewed the many
ways  in  which  the  framework  had  been  applied,  including  its  application  in  mainstream  commercial
programming products such as Microsoft’s Visual Studio (Dagit et al. 2006, Green et al. 2006). This paper
cannot  review  that  literature  in  detail,  but  it  extends  to  practical  design  guidance  for  programming
languages and APIs, evaluation methods for programming tools, theories of user interaction, requirements
capture methods and others.
Based on this substantial and diverse body of research, the author has developed a teaching guide, which
synthesizes a pattern language of user experience from all these different sources, variants and extensions of
the original CDs framework. This guide has been used in contexts that are intentionally distinct from the
programming language research that  has  been  the main focus  of  CDs until  now.  The most  substantial
application  to  date  has  been  in  a  graduate  course  within  a  professional  master’s  programme  for
sustainability leadership4. The goal of that course has been to highlight the role played by representation
systems, when global challenges are being negotiated in the presence of technology. It is taught to students
3 https://www.youtube.com/watch?v=rhN35bGvM8c

http://ui-patterns.com/
http://ui-patterns.com/
http://www.livecoding.tv/


with no prior experience of interaction design, using a case study of mobile GPS usage by indigenous people
negotiating  with  logging  companies  in  the  Congo  Basin  (Lewis  2014).  This  course  has  provided  an
opportunity to expand the concept of a representational pattern language to the widest possible extent,
encompassing considerations of physical context, language, culture, colonialism, embodiment, ecosystems,
distributed and locative media, and many others. 

1.3 Interrogating User Experience in Performance Programming

Starting from a pattern language that has been independently developed to analyse the user experience of
novel digital interventions, this paper now analyses performance programming from that perspective. The
goal of the analysis is to explore the ways in which performance programming exhibits (or does not exhibit)
patterns that are also seen in other digital media contexts. These patterns are expressed, as in the Cognitive
Dimensions  of  Notations  framework,  in  terms  of  interaction  with  an  information  structure,  where  the
structure is (in the digital music context) the configuration of synthesisers, samples, filters, instruments and
other software components that generate sound through digital means.
In keeping with mainstream practice of analysis using CDs, the patterns are used as a discussion tool,
providing a structured basis for systematic consideration of different aspect of user experience. In classical
CDs analysis, the characteristic user activities are first defined, together with a profile of dimensions that
are most salient for that kind of activity. Each dimension is then considered in turn, in order to observe how
the  particular  combination  of  notation  and  environment  will  support  the  identified  activities.  This
consideration also includes trade-offs where improvement on one dimension might result in detriment for
another, and possible work-arounds that users would engage in. Each of these elements has been included in
the following analysis, using appropriate analogies to the broader class of user experience patterns now
identified. 
The specific form in which the patterns are expressed below, using reference numbers to identify particular
patterns, allows the reader to cross-reference this analysis with a forthcoming publication in which the
patterns of user experience have been applied in another non-programming context, to the design of novel
diagrammatic representations (Blackwell in press). An appendix in that publication can also be consulted for
more detailed derivations that relate each pattern to the previous bodies of research from which is has been
developed,  in particular  drawing on the various iterations and variants of the Cognitive Dimensions of
Notations framework.

2. PATTERNS OF ACTIVITY IN PERFORMANCE PROGRAMMING
As with the architectural analyses of Christopher Alexander, patterns in the user experience of live coding
can be described from different perspectives.  This section contrasts the different modes in which people
interact with code, expressed as types of activity that are characteristic of  Interpretation,  Construction and
Collaboration activities. In each case, these are activities that have been observed in other areas of notation
and representation use, and this pre-existing descriptive framework is used to interrogate different aspects
of performance programming, stepping aside from conventional descriptions that are already familiar in the
critical discourse of live coding.
Each of these kinds of activity, as with the more limited set of activities that has previously been described
in the Cognitive Dimensions framework, is associated with a different profile of user experience patterns
that are found to be particularly salient in the context of that activity. These profiles are briefly indicated, in
the following discussion, using reference numbers referring to the experience patterns that will be described
later in the paper. This numbering scheme is consistent with (Blackwell in press), to allow further citations
of previous work.

2.1 Interpretation activities: reading information structure

In  the  performance  programming  setting,  the  audience  interprets  the  information  structure  that  the
performer constructs. Interpretation activities include: Search: The audience often follow the current cursor
position, but may also search for the code that was responsible for producing a particular audible effect. This
activity is enabled by patterns VE1, VE4, SE3, TE4 below. Comparison: The audience constantly compares
different  pieces  of  code  –  both  diachronically  (the  state  of  the  code  before  and  after  a  change),  and
4 Master of Studies at the Cambridge Institute for Sustainability Leadership 
http://www.cisl.cam.ac.uk/graduate-study/master-of-studies-in-sustainability-leadership



synchronically (comparing expressions on different parts of the screen in order to infer language features by
comparison). This activity is enabled by patterns VE5, SE4, ME4, TE2 below.  Sense-making: Live coding
audiences often have no prior expectation of the code that is about to be produced, so they must integrate
what they see into a mental model of its overall structure. This activity is enabled by patterns VE2, VE3, SE1,
ME1, ME3, TE3, TE5 below.

2.2 Construction activities: building information structure

The performer  is  defining,  in  various  layers,  an  abstract  syntax  tree,  a  synthesiser  configuration,  or  a
musical structure with audible consequences that will be perceived by listeners. The following activities
represent different approaches to the creation of this structure. Incrementation: The structure of the code
has been established, but a piece of information is added – e.g. another note, a synthesiser parameter. This
activity is enabled by patterns IE1, PE6 below.  Transcription: The structure is already defined, and the
performer needs to express it in the form of code.  Perhaps it has been rehearsed or pre-planned? This
activity is enabled by patterns ME2, IE2, IE3, IE5, PE2, PE5 below. Modification: Is a constant of live coding
– many live coders commence a performance with some code that they may modify, while even those who
start with a blank screen restructure the code they have written. This activity is enabled by patterns SE2,
ME5,  IE4,  TE1,  PE1,  CE1 below.  Exploratory design:  Despite the musically exploratory nature of live
coding,  it  is  rare for  complex  data structures  or  algorithms to be explored  in  performance – primarily
because an executing program can only gradually change its structure while executing. As a result, live
coding is surprisingly unlikely to exhibit the kinds of “hacking” behaviour anticipated when the distinctive
requirements of exploratory software design were highlighted by the Cognitive Dimensions framework.
This activity is enabled by patterns TE5, PE3, PE4, CE2, CE3, CE4 below.

2.3 Collaboration activities: sharing information structure

Descriptions  of  collaboration  were  added  relatively  recently  to  the  Cognitive  Dimensions  framework
(Bresciani et al  2008),  perhaps because the stereotypical  expectation is that programming is a relatively
solitary  activity.  However,  the  performance  programming  context  immediately  introduces  a  social  and
“collaborative” element, if only between the performer and audience. The activities that have been identified
in previous work include: Illustrate a story: Originally intended to describe situations in which a notation
is used to support some other primary narrative, this provides an interesting opportunity to consider the
audience (and performer) perspective in which the music is the primary medium, and the code, to the extent
it is shared, is there to support this primary function. This activity is enabled by patterns VE2, VE4, IE6, TE1,
CE3 below. Organise a discussion:  At first  sight,  this seems a foreign perspective to live coding.  An
algorave is not a discussion. But one might consider performance settings such as conferences, or comments
on online video, in which the audience do respond to the work. Does the code play a part? Furthermore, on-
stage improvisation among a group of performers can be analysed as discursive – does the code support
this? This activity is enabled by patterns ME5, IE2, TE2, PE3, PE4, CE4 below. Persuade an audience: What
is the visual rhetoric embedded in code? Many notation designers are reluctant to admit the rhetorical or
connotative elements of the representations they create, and these design elements of live coding languages
are often left relatively tacit. This activity is enabled by patterns VE3, SE4, ME2, ME6, IE5, TE3, TE5 below.

3. DESIGN PATTERNS FOR EXPERIENCE IN USE
This section  offers  a  comprehensive  description of  patterns in  user  experience  that  result  from, or  are
influenced by,  the design of different notations or tools.  As discussed in the previous section,  different
aspects of the performance programming context are enabled by different subsets of these patterns. This set
of patterns can potentially be used either as a checklist of design heuristics, for those who are creating new
live coding tools, or as a means of reflecting on the capabilities of the tools they already have. In particular,
there are many design decisions that carry different implications for audiences and performers, which would
appear to be an important critical consideration for the design and evaluation of performance programming
technologies.



3.1 Experiences of Visibility

Visibility  is  essential  to  performance  programming – the  TOPLAP manifesto  demands  “show us  your
screens.”5 It is therefore completely appropriate that this group of patterns so often comes before all others.
VE1: The information you need is visible:  The constraints imposed by the performance programming
context are extreme – a single screen of code is projected or streamed, in a font that must be large enough
for an audience to see. VE2: The overall story is clear: Can code be presented in a way that the structure
is  apparent,  or  might  it  be necessary  to  leave out  some of  the  detail  in  order  to improve this  overall
understanding? VE3: Important parts draw your attention: When there is such a small amount of code
visible,  perhaps  this  isn’t  much  of  a  problem.  However,  it  seems  that  many live  coders  support  their
audiences by ensuring that the current insertion point is prominent, to help in the moment engagement
with the performance.  VE4: The visual layout is concise:  At present, the constraints already described
mean that the importance of this pattern is unavoidable. VE5: You can see detail in context: This seems
to be an interesting research opportunity for live coding. At present, many live coding environments have
adopted the buffer-based conventions of plain text editors, but there are better ways of showing structural
context, that could be borrowed from other user interfaces, IDEs or screen media conventions.

3.2 Experiences of Structure

In the running example used in this paper, it is assumed that the “structures” implicit in the performance
programming  context  are  the  structures  of  music  synthesis.  However,  as  already  noted,  this  running
example should also be interpreted as potentially applying to other kinds of live-coded structured product –
including imagery, dance and others. In all  these cases, the understanding inherited from the Cognitive
Dimensions framework is that the information structure consists of ‘parts’, and relationships between those
parts. SE1: You can see relationships between parts: Are elements related by a bounded region, or lines
drawn between them? Do multiple marks have the same colour, orientation, or size? Are there many verbal
or numeric labels, some of which happen to be the same, so that the reader must remember,  scan and
compare?  SE2:  You can change your mind easily:  This is  a  critical  element  supporting  the  central
concern with improvisation in live coding.  The problems associated with this pattern were captured  in
Green’s most popular cognitive dimension of “Viscosity – a sticky problem for HCI” (1990). SE3: There are
routes from a thing you know to something you don't:   Virtuoso performers are expected to hold
everything  in  their  heads.  Would  it  be  acceptable  for  a  live  coder  to  openly  rely  on  autocompletion,
dependency browsers,  or API tutorials when on stage?  SE4: You can compare or contrast different
parts:  The  convention  of  highly  constrained  screen  space  means  that  juxtaposition  is  usually
straightforward, because everything necessary is already visible, allowing the performer to judge structural
relationships and the audience to interpret them.

3.3 Experiences of Meaning

In many programming languages, the semantics of the notation are problematic, because the programmer
must anticipate the future interpretation of any given element. In live coding, meaning is directly available
in the moment, through the concurrent execution of the program being edited. As a result, there is far
greater freedom for live coding languages to explore alternative, non-literal, or esoteric correspondences.
ME1:  It  looks  like  what  it  describes: Live  coders  often  use  this  freedom  for  a  playful  critique  on
conventional programming, with intentionally meaningless variable names, ambiguous syntax and so on.
ME2: The purpose of each part is clear: Within the granularity of the edit/execute cycle, the changes that
the audience perceive in musical output are closely coupled to the changes that they have observed in the
source code. As a result, “purpose” is (at least apparently) readily available.  ME3: Similar things look
similar: At present, it is unusual for live coders to mislead their audiences intentionally, by expressing the
same  behaviour  in  different  ways.  This  could  potentially  change  in  future.  ME4:  You  can  tell  the
difference between things: In contrast, live coding languages often include syntax elements that may be
difficult for the audience to distinguish. A potential reason for this is that the resulting ambiguity supports a
richer interpretive experience for the audience. This is explored further in CE2 and CE3 below. ME5: You
can add comments: A simplified statement of the cognitive dimension of secondary notation, this refers to
those aspects of the code that do not result in any change to the music. In performance, the text on the
screen offers a side-band of communication with the audience, available for commentary, meta-narratives
and many other intertextual devices. ME6: The visual connotations are appropriate: The visual aesthetic
5 http://toplap.org/wiki/ManifestoDraft



of live coding environments is a highly salient aspect of their design, as appropriate to their function as a
performance  stage  set.  The  muted  greys  of  Marc  Downie’s  Field,  the  ambient  radar  of  Magnusson’s
Threnoscope, the vivid pink of Aaron’s Sonic Pi, and the flat thresholded geometry of my own Palimpsest are
all distinctive and instantly recognisable.

3.4 Experiences of Interaction

These patterns relate to the user interface of the editors and tools. It is the performer who interacts with the
system,  not  the  audience,  so  these  are  the  respects  in  which the  greatest  tensions  might  be  expected
between the needs of  the two.  IE1: Interaction opportunities are evident:  This is a fundamental of
usability in conventional user interfaces, but the performance of virtuosity involves the performer giving
the impression that all her actions are ready to hand, perhaps in a struggle against the obstacles presented
by the “instrument”.  Furthermore, the performer may not want the audience to know what is going to
happen next – for example, in my own performances with Palimpsest, I prefer the source images that I
intend to manipulate to be arranged off-screen, on a second monitor that is not visible to the audience, so
that I can introduce them at the most appropriate points in the performance. The question of choice is
always implicit, but a degree of mystery can enhance anticipation. IE2: Actions are fluid, not awkward:
Flow is essential to both the experience and the illusion of performance. For many developers of live coding
systems,  this  is  therefore  one  of  their  highest  priorities.  IE3:  Things  stay  where  you  put  them:
Predictability  is  a  virtue  in  most  professional  software  development  contexts,  but  in  improvised
performance, serendipity is also appreciated. As a result, the representations are less static than might be
expected. An obvious example is the shift and shake features in Magnusson’s ixi lang, whose purpose is to
behave in opposition to this principle. IE4: Accidental mistakes are unlikely: On the contrary, accidents
are an opportunity for serendipity, as has been noted since the earliest discussions of usability in live coding
(e.g. Blackwell & Collins 2005). IE5: Easier actions steer what you do: In many improvising genres, it is
understood that the affordances of the instrument, of the space and materials, or of the body, shape the
performance.  However,  easy  licks  quickly  become  facile  and  trite,  with  little  capacity  to  surprise  the
audience.  As a result,  every new live coding tool  can become the starting point for a miniature genre,
surprising at first, but then familiar in its likely uses.  IE6: It is easy to refer to specific parts:  Critical
commentary,  education,  support  for  user communities,  and the collaborative discourse of rehearsal  and
staging all require live coding performers to talk about their code. Although ease of reference is seldom a
salient feature early in the lifecycle of a new tool, it becomes more important as the audience expands and
diversifies.

3.5 Experiences of Thinking

The kinds  of  thinking done by  the  performer  (creative  decisions,  planning the  performance,  analysing
musical  structures)  are  very  different  to  those  done  by  the  audience  (interpretation,  active  reception,
perhaps selecting dance moves). Both appear rather different to conventional professional programming
situations, which far more often involve reasoning about requirements and ways to satisfy them. TE1: You
don’t need to think too hard: Cognitive load, resulting from working memory and dependency analysis,
is less likely to be immediately challenging in live coding situations because both the code and the product
are directly available. However, audiences often need to interpret both the novel syntax of the language, and
the  performer’s  intentions,  meaning  that  they  may  (unusually)  have  greater  cognitive  load  than  the
performer – if they are concentrating! TE2: You can read-off new information: Purely textual languages
are unlikely to exhibit this property, but visualisations such as Magnusson’s  Threnoscope exhibit relations
between the parts beyond those that are explicit in the code, for example in phase relations that emerge
between voices moving with different velocity.  TE3: It makes you stop and think: The challenge noted
for audiences in TE1 here becomes an advantage, because it offers opportunities for richer interpretation.
TE4: Elements mean only one thing: Lack of specificity increases expressive power at the expense of
abstraction, often resulting in short-term gains in usability. In live coding, the performer is usually practiced
in taking advantage of the available abstraction, while the audience may appreciate interpretive breadth.
TE5: You are drawn in to play around:  Clearly an advantage for performing programmers,  and less
problematic in a context where risk of the program crashing is more exciting than dangerous. However,
playfulness is supported by the ability to return to previous transient states (IE3).



3.6 Experiences of Process

Many conventional software development processes include assumptions about the order in which tasks
should be done – and this is less common in live coding. However, it is useful to remember that rehearsal
and composition/arrangement do involve some different processes that may not be involved in performance
situations (for example, Sam Aaron notes in another paper at this conference that he keeps a written diary
while rehearsing).  PE1: The order of tasks is natural:  Every user may have a different view of what is
‘natural’, although live coding audiences appreciate an early start to the music. PE2: The steps you take
match your goals:  Live coding is a field that shies away from prescription, and ‘goals’ often emerge in
performance. Nevertheless, IE5 results in recognisable patterns that may not have been conceived explicitly
by the performer. PE3: You can try out a partial product: Absolutely inherent in live coding – a ‘finished’
live coded program seems almost oxymoronic! PE4: You can be non-committal: Another high priority for
live-coded languages,  which often support  sketch-like preliminary definitions.  PE5: Repetition can be
automated:  Every  performing  programmer  is  aware  of  developing  personal  idiomatic  conventions.
Occasionally the language is extended to accommodate these automatically, but more often, they become
practiced in the manner of an instrumental riff, or encoded through muscle memory as a ‘finger macro.’
PE6: The content can be preserved: Some live coders habitually develop complex libraries as a jumping-
off point for improvisation (e.g. Andrew Sorensen), while others prefer to start with an empty screen (e.g.
Alex McLean). Whether or not code is carried forward from one performance to another, it might be useful
to explore more thoroughly whether the temporality of the performance itself can be preserved, rather than
simply the end result.

3.7 Experiences of Creativity

In  analysis  of  conventional  software  engineering,  this  final  class  of  experience  might  appear  trivial  or
frivolous. However, when programming is taking place in a performing arts context, ‘creativity’ (of some
kind) is assumed to be one of the objectives.  This suggests that these patterns will be among the most
valued. CE1: You can extend the language: Live coders constantly tweak their languages, to support new
performance capabilities, but this most often happens offline, rather than during performance. Language
extension in performance is conceivable, and may offer interesting future opportunities, but would greatly
increase the challenge to audience and performer in terms of  TE4.  CE2: You can redefine how it  is
interpreted:  The predefined  semantics  of  most  mainstream  programming  languages  means  that  open
interpretation  may  be  impractical.  But  in  live  coding,  opportunities  for  increased  expressivity,  and
serendipitous reinterpretation, suggest that this experience is likely to be more highly valued. CE3: You can
see  different  things  when  you  look  again:  This  is  a  key  resource  for  inspiration  in  improvised
performance contexts, to generate new ideas for exploration, and to provide a wider range of interpretive
opportunities for the audience. As a result, this represents one of the most significant ways in which live
coding languages differ from conventional programming languages, where ambiguity is highly undesirable.
CE4: Anything not forbidden is allowed: Many programming language standards attempt to lock down
the semantics of the language, so that all possible uses can be anticipated and tested. In creative contexts,
the  opposite  is  true.  An  execution  result  that  is  undesirable  in  one  performance  may  be  completely
appropriate  in  another,  and  digital  media  artists  have  often  revelled  in  the  glitch  or  crash,  as  a
demonstration of fallibility or fragility in the machine.

4. DISCUSSION
This paper has investigated the nature of user experience in live coding, and also in other contexts that
might  more  broadly  be  described  as  performance  programming,  characterized  by  the  presence  of  an
audience  observing  the  programming  activity.  This  investigation  has  proceeded  by  taking  an  existing
analytic  framework  that  describes  patterns  of  user  experience,  in  the  style  of  an  architectural  pattern
language, and has explored the insights that can be obtained by considering performance programming
from the perspective of this framework. 

4.1 Validity of the Analysis

The validity of this analysis relies on two precautions: Firstly, the existing framework is applied without
modification or adaptation. Rather than selecting elements from the framework by convenience or apparent
surface  relevance,  the  structure  and  content  of  the  existing  framework  has  been  applied  without
modification. This provides an opportunity for disciplined consideration of all possible factors, whether or



not they might have been considered to be relevant at first sight. This first precaution has demonstrated
some novel advantages, for example by drawing closer attention to the user experience of the audience in
performance programming situations.  The value of  this precaution can be understood  by contrast  with
previously less successful attempts to apply the Cognitive Dimensions framework, in which researchers
ignored, or redefined, particular dimensions that were inconvenient or inconsistent with their assumptions
(as discussed in Blackwell & Green 2000).
The  second  precaution  is  that  the  framework  chosen  for  application  is  intentionally  tangential  to  the
existing  analytic  approaches  that  have  been  applied  in  live  coding,  thus  offering a  form of  qualitative
triangulation. There have been previous analyses of live coding from the perspective of performance studies,
and of programming language design. Although these prior analyses have resulted in a useful emerging
body of theory, there is a tendency for such bodies of theory to be self-reinforcing, in that analytic design
discourse is grounded in the body of theory, and empirical investigations of its application reflect the same
assumptions. In contrast, the framework applied here was developed for analysis of visual representation
use, in situations ranging from central African forests to Western business, education and domestic settings.
Although  drawing  heavily  on  the  approach  pioneered  in  the  Cognitive  Dimensions  of  Notations,  this
framework has subsequently been adapted for an audience of visual representation designers, with many
changes of terminology and structure (Blackwell in press). One consequence is that the terminology may
appear less immediately relevant to live coding than is the case with familiar Cognitive Dimensions such as
secondary notation. But the consequent advantage is to defamiliarise the discussion of user experience in
live  coding,  allowing  us  to  achieve  a  systematic  analysis  from  a  novel  perspective,  and  an  effective
triangulation on the understanding of interaction in live coding.

4.2 Applying the Analysis

The next phase of this work is to apply the results of this analytic investigation as a starting point for
empirical study and practice-led design research. The immediate opportunity for empirical study is to use
the findings from this investigation as a coding frame6 for the analysis of qualitative descriptions of user
experiences  in  performance  programming,  whether  taken  from  audiences  or  from  performers.  The
framework  will  be  beneficial  to  such  situations,  by  providing  a  theoretically-grounded  organisational
structure rather than an ab initio categorisation. There is also a possible advantage for the framework itself,
in that new sources of experience reports, from situations as different as algoraves and screencast videos,
may identify new patterns of experience that have not previously been noticed in other programming and
formal representation contexts.
The second opportunity is to use the results of this analysis as a resource for design research. This pattern
language of user experience in performance programming retains the potential of the original Cognitive
Dimensions framework, that it can be employed as a discussion vocabulary for use by language designers. It
points to design opportunities, as noted at points throughout the above analysis. It offers the potential for
reflection on the consequences of design decisions. It draws attention to known trade-offs, although this
paper does not have space for the detailed listing of those trade-offs described elsewhere (Blackwell  in
press). Finally, it  offers the potential for use as an evaluative framework, for example in the manner of
Heuristic Evaluation, or as a basis for the design of user questionnaires, in the manner of the Cognitive
Dimensions questionnaire (Blackwell & Green 2000).
The discussion of live coding in this paper has primarily drawn on music live coding systems to illustrate
the relationship between structure and representation. This choice was made in part because the author is
more familiar with music than with other performing arts. However, it is intended that this analysis can be
applied to many other arts contexts,  and the author’s  preliminary investigations have already included
study of dance (Church et al. 2012) and sculpture (Gernand et al. 2011), as well as experiments in live-coded
visual imagery (Blackwell & Aaron 2014). Current live coding research by others, for example McLean’s
performances  of  textile craft practices such as  knitting and weaving,  is  also likely to benefit from this
analytic approach.

5. CONCLUSIONS
Systematic description of user experience is a valuable design resource, as noted in the development and
subsequent popularity of Christopher Alexander’s pattern language for the design of the built environment.
6 Note that the term “coding frame” is used here as a technical term in qualitative data analysis, which has no relationship to “coding” of software.



The idea of the pattern language has been appropriated enthusiastically in software engineering and in user
interface design, although in a manner that has lost some of the most interesting implications in studying
experiences of computation. Live coding, and performance programming more broadly, represent distinctive
kinds of user experience. The user experiences of performance programming can be analysed in terms of the
distinct ways that performers and audiences use and interpret the representations that they see. As with
Cognitive Dimensions of Notations, different types of experience result  from the ways that information
structures are represented and manipulated. In live coding contexts, these information structures must be
mapped  to  the  structural  elements  by  which  art  works  are  constructed  and  interpreted.  The resulting
framework  offers  a  basis  for  the  analysis  of  live  coding  experiences,  as  well  as  for  reflexive  critical
understanding of the new languages and tools that we create to support live coding.

Acknowledgments

Thank you to Thomas Green and Sally Fincher, for valuable review and contributions to the development of
the Patterns of User Experience framework.

REFERENCES
Alexander, C. (1978). The timeless way of building. Oxford University Press.
Beck, K. and Cunningham, W. (1987).  Using pattern languages for object-oriented programs.  Tektronix, Inc.
Technical Report No. CR-87-43, presented at OOPSLA-87 workshop on Specification and Design for Object-
Oriented Programming. Available online at http://c2.com/doc/oopsla87.html (accessed 17 September 2009)
Blackwell, A.F. (2014). Palimpsest: A layered language for exploratory image processing.  Journal of Visual
Languages and Computing 25(5), pp. 545-571.
Blackwell, A.F. (in press) A pattern language for the design of diagrams. In C. Richards (Ed),  Elements of
Diagramming. To be published June 2015 by Gower Publishing.
Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument. In Proceedings of
the Psychology of the Programming Interest Group (PPIG 2005), pp. 120-130.
Blackwell, A.F. & Fincher, S. (2010). PUX: Patterns of User Experience. interactions 17(2), 27-31.
Blackwell, A.F. & Green, T.R.G. (2000). A Cognitive Dimensions questionnaire optimised for users. In A.F.
Blackwell & E. Bilotta (Eds.)  Proceedings of the  Twelth Annual Meeting of the  Psychology of Programming
Interest Group , 137-152
Blackwell,  A.F.  and  Aaron,  S.  (2014).  Take  a  little  walk  to  the  edge  of  town:  A live-coded  audiovisual
mashup. Performance/presentation at CRASSH Conference Creativity, Circulation and Copyright: Sonic and
Visual  Media  in  the  Digital  Age.  Centre  for  Research  in  the  Arts,  Social  Sciences  and  Humanities,
Cambridge, 28 March 2014.
Bresciani, S., Blackwell, A.F. and Eppler, M. (2008). A Collaborative Dimensions Framework: Understanding
the  mediating  role  of  conceptual  visualizations  in  collaborative  knowledge  work.  Proc.  41st  Hawaii
International Conference on System Sciences (HICCS 08), pp. 180-189.
Church, L., Rothwell, N., Downie, M., deLahunta, S. and Blackwell, A.F. (2012). Sketching by programming
in the Choreographic  Language Agent.  In  Proceedings  of  the Psychology of  Programming  Interest  Group
Annual Conference (PPIG 2012), pp. 163-174.
Dagit, J., Lawrance, J., Neumann, C., Burnett, M. Metoyer, R. and Adams, S. Using cognitive dimensions:
Advice from the trenches. Journal of Visual Languages & Computing, 17(4), 302-327.
Edge,  D.  and Blackwell,  A.F.  (2006).  Correlates  of  the  cognitive  dimensions  for  tangible  user  interface.
Journal of Visual Languages and Computing, 17(4), 366-394.
Gabriel, R.P. (1993). Habitability and piecemeal growth. Journal of Object-Oriented Programming (February 
1993), pp. 9-14. Also published as Chapter 2 of Patterns of Software: Tales from the Software Community. 
Oxford University Press 1996. 
Available online http://www.dreamsongs.com/Files/PatternsOfSoftware.pdf

http://www.dreamsongs.com/Files/PatternsOfSoftware.pdf
http://dx.doi.org/10.1016/j.jvlc.2006.04.005
http://www.ppig.org/
http://www.ppig.org/
http://www.ppig.org/workshops/12th-programme.html
http://www.ppig.org/papers/12th-blackwell.pdf
http://www.cl.cam.ac.uk/~afb21/publications/BlackwellFincher-PUX.pdf
http://authors.elsevier.com/a/1Ph9Y,No1TceVp


Gamma, E. Helm, R. Johnson, R. and Vlissides, J. (1994). Design Patterns: Elements of reusable object-oriented
software. Addison-Wesley.
Gernand,  B.,  Blackwell,  A.  and  MacLeod,  N.  (2011).  Coded  Chimera:  Exploring  relationships  between
sculptural form making and biological morphogenesis through computer modelling. Crucible Network.
Green, T.R.G. (1989). Cognitive Dimensions of Notations. In L. M. E. A. Sutcliffe (Ed.), People and Computers
V. Cambridge: Cambridge University Press. 
Green, T.R.G. (1990). The cognitive dimension of viscosity: A sticky problem for HCI. In Proceedings of the
IFIP TC13 Third Interational Conference on Human-Computer Interaction (INTERACT '90), pp. 79-86.
Green,  T.R.G.,  & Petre,  M. (1996). Usability Analysis of Visual Programming Environments:  a ‘cognitive
dimensions’ framework. Journal of Visual Languages and Computing, 7, 131-174.
Green,  T.R.G.,  Blandford,  A.E.,  Church,  L.,  Roast,  C.R.,  and  Clarke,  S.  (2006).  Cognitive  dimensions:
Achievements, new directions, and open questions. Journal of Visual Languages & Computing, 17(4), 328-365.
Holzner, S. (2006). Design Patterns For Dummies. Wiley.
Larman, C. (2004).  Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and
Iterative Development. Prentice Hall.
Lewis, J. (2014). Making the invisible visible: designing technology for nonliterate hunter-gatherers. In J.
Leach and L. Wilson (Eds). Subversion, Conversion, Development: Cross-Cultural Knowledge Exchange and the
Politics of Design, 127-152.
Tidwell, J. (2005). Designing Interfaces: Patterns for Effective Interaction Design. O’Reilly.


	1. INTRODUCTION
	1.1 The User Audience of Performance Programming
	1.2 Patterns of User Experience
	1.3 Interrogating User Experience in Performance Programming

	2. Patterns of Activity in Performance Programming
	2.1 Interpretation activities: reading information structure
	2.2 Construction activities: building information structure
	2.3 Collaboration activities: sharing information structure

	3. DESIGN Patterns for experience in use
	3.1 Experiences of Visibility
	3.2 Experiences of Structure
	3.3 Experiences of Meaning
	3.4 Experiences of Interaction
	3.5 Experiences of Thinking
	3.6 Experiences of Process
	3.7 Experiences of Creativity

	4. Discussion
	4.1 Validity of the Analysis
	4.2 Applying the Analysis

	5. Conclusions
	REFERENCES

