
Physical Livecoding with lileBits

James Noble
Victoria University of Wellington, NZ

kjx@ecs.vuw.ac.nz

ABSTRACT

lileBits (lileBits.cc) is an open-source hardware library of pre-assembled analogue components that can be easily
assembled into circuits, disassembled, reassembled, and re-used. In this demonstration, we will show how lileBits —
and the KORG lileBits SynthKit in particular — can be considered a physically-embodied domain specific programming
language, and thus how assembling or improvising music with lileBits circuits is a tangible form of livecoding.

1. Introduction

lileBits (lileBits.cc) is an open-source hardware library of pre-assembled analogue components that can be easily
assembled into circuits, disassembled, reassembled, and re-used (Bdeir 2009). Designed to inspire and teach basic electrics
and electronics to school-aged children (and adults without a technical background) lileBits modules clip directly onto
each other. lileBits users can build a wide range circuits and devices with “no programming, no wiring, no soldering”
(Bdeir 2013) — even extending to a “Cloud Module” offering a connection to the internet, under the slogan “yup. no
programming here either [sic]” (lileBits 2014).

e lileBits system comes packaged as a number of kits: “Base”, “Premium”, and “Deluxe” kits with 10, 14, and 18
modules respectively; and a series of booster kits containing lights, triggers, touch sensors, and wireless transceivers.
lileBits have recently introduced special purpose kits in conjunction with third party organisations, notably a “Space
Kit” designed in conjunction with NASA, and a “Synth Kit” designed in conjunction with KORG that contains the key
components of an analogue modular music synthesizer.

In spite of lileBits’ marketing slogans, we have argued that lileBits —- and the lileBits Synth Kit in particular (Noble
and Jones 2014a; Noble and Jones 2014b) — as a live physically-embodied domain specific programming language. If
building lileBits circuits is programming, then performing music with the lileBits Synth Kit (configuring modules to
construct an analogue music synthesizer, and then producing sounds with that synthesizer) can be considered as a music
performance by live coding (McLean, Rohrhuber, and Collins 2014) — especially as the circuit construction typically
occurs simultaneously with sound production.

e demonstration draws directly on previous demonstrations given at the FARMworkshop in Uppsala (Noble and Jones
2014a) and the VISSOFT conference in Victoria (Noble and Jones 2014b).

Figure 1: A simple lileBits Synth Kit circuit. From le to right, the three modules are a power source, an oscillator, and a
speaker.

mailto:kjx@ecs.vuw.ac.nz


2. e littleBits SynthKit

Figure 1 shows the one of the simplest circuits in the lileBits synth kit — indeed, the simplest lileBits circuit that can
actually make any sound. is circuit is composed of three simple modules — a power module on the le, an oscillator
module in the centre, and a speaker module on the right. e power module accepts power from a nine volt baery (or
a 9V guitar pedal mains adapter) and provides that power to “downstream” modules — as seen in the figure, lileBits
circuits flow in a particular direction, and all modules are oriented so that this flow is le to right.

3. Livecoding with littleBits

If building and configuring circuits with lileBits can be considered as a form of embodied, tangible, programming, then
performing music “live” with lileBits can be considered as a form of livecoding — performance programming to produce
music (McLean, Rohrhuber, and Collins 2014; Blackwell et al. 2014; Magnusson 2014) — or in this case both building and
playing synthesizers as a live performance. In this section we describe our practice livecoding lileBits, and compare
and contrast with typically textual livecoding (inasmuch as typical livecoding practice can be supposed to exist).

is demonstration (Noble and Jones 2014a; Noble and Jones 2014b) draws on the author’s experience livecod-
ing/performing lileBits with “Selective Yellow”, an experimental improvisation duo of indeterminate orthography
drawing on New Zealand’s heritage of experimental music practice (Russell 2012; McKinnon 2011), yet seeking to
recreate (electronically) all the worst excesses of free jazz with all the enthusiasm of antisocial teenagers meeting their
first MOS6851, while maximising the time required to set up equipment.

Selective Yellow performances typically employ a number of different synthesizers or sound generators as well as lit-
tleBits, ranging from digital toys (Kaosscilators, Buddhamachines) to semi-modular analogue and MIDI digital synthesiz-
ers, played with a variety of controllers (wind controllers, monome grids, knob boxes etc) — while eschewing a primary
role for digital audio workstation soware and computer-based virtual instruments. Selective Yellow is still a relatively
young project, probably only Grade 2 as evaluated by Nilson (Nilson 2007).

Livecoding with lileBits involves two main activities that are tightly interleaved in a performance, first building the
circuits by clipping modules together, and second “playing” the resulting synthesizer by turning the shas, thumbwheels,
switches, the “keys” on the keyboardmodule to actually generate sound. Generally a performance — or rather the portion
of the performance improvised upon lileBits — starts with the smallest possible sound-generating circuit, typically the
single unmodulated oscillator in figure 1. Once the lileBits are assembled (and the speaker module’s output patched
into the sound system) we can manipulate the oscillator’s pitch and output waveform. Depending on the context of
the improvisation, the possibilities of such a straightforward sound generator will be more or less quickly exhausted,
at which point the performer will disassemble the circuit, insert one or more additional modules (a second oscillator, a
filter, or perhaps a keyboard or sequencer module) and then continue playing the resulting circuit. In this overall paern,
lileBits livecoding is similar to some textual livecoding, where performers typically start with a single texture and then
build a more complex improvisation over time.

While the circuit building and playing are conceptually separate activities, an advantage of the physical nature (and
careful design) of the lileBits components is that the two activities can be very tightly interleaved. Indeed, with more
complex circuits (or more than one Synth Kit) its is quite possible to keep part of a circuit playing and producing sound
(such as a sequencer driving an oscillator) while building/editing another branch of the same circuit — adding in a second
oscillator controlled by the keyboard module with an independent output route, perhaps, or adding in a modulation path
to a filter that is already making sound in the main circuit. Again, this overall dynamic is also found in some textual
livecoding performances (see e.g. the SuperCollider jitlib (Collins et al. 2003)). Of course, because of the underlying
simplicity of the analogue synthesizer embodied within the lileBits modules, the sounds produced by lileBits Synth
Kit are much less complex than the sounds that can be produced by a general-purpose laptop running a range of digital
synthesis or sampling (virtual) instruments, although, being purely analogue, they have a piercing tone all of their own.

In the same way that programmatic live coders generally display the code on their laptop screens to the audience of
the performance (Collins et al. 2003), Selective Yellow projects an image of the desk or floor space where the lile bits
circuits are being assembled. e projected image not only seeks to dispel “dangerous obscurantism” (Ward et al. 2004)
but also to illustrate how the source is being generated - especially as some modules include LEDs as feedback to the
performer. e sequencer module, for example, lights an LED to indicate the current sequencer step, and other lileBits
modules can also be used to provide more visual feedback on circuits where that is necessary.

is projected display seems particularly useful for audiences when the performer is “debugging” their circuit (live). Here
again the physicality of the lileBits modules comes to the fore, so there is something for the audience to see: the easiest
way to debug a lileBits circuit is just to pull it apart, and insert a speaker module aer each module in the circuit in turn,



listening to the sound (if any) being output by each module. Oen this lets the performer understand (and the audience
to notice) that there is no sound output from a lileBits circuit, allowing the performer either to readjust the module
parameters, or to re-assemble the circuit in a different design, if not producing the desired sound, at least producing
something.

4. Anowledgements

anks to Chris Wilson, for being the other half of Selective Yellow. anks to a wide range of anonymous reviewers for
their comments. is work is partially supported by the Royal Society of New Zealand (Marsden Fund and James Cook
Fellowship).

5. References

Bdeir, Ayah. 2009. “Electronics as Material: lileBits.” In Proc. Tangible and Embedded Interaction (TEI), 397–400.

———. 2013. “LileBits, Big Ambitions!” http://littlebits.cc/littlebits-big-ambitions.

Blackwell, Alan, Alex McLean, James Noble, and Julian Rohrhuber. 2014. “Collaboration and Learning rough Live
Coding (Dagstuhl Seminar 13382).” Dagstuhl Reports 3 (9): 130–168.

Collins, Nick, Alex McLean, Julian Rohrhuber, and Adrian Ward. 2003. “Live Coding in Laptop Performance.” Organised
Sound 8 (3) (December): 321–330.

lileBits. 2014. “Sneak Peek: the Cloud Block.” http://littlebits.cc/cloud.

Magnusson, or. 2014. “Herding Cats: Observing Live Coding in the Wild.” Computer Music Journal 38 (1): 8–16.

McKinnon, Dugal. 2011. “Centripetal, Centrifugal: Electroacoustic Music.” In HOME, LAND and SEA: Situating Music in
Aotearoa New Zealand, edited by Glenda Keam and Tony Mitchell, 234–244. Pearson.

McLean, Alex, Julian Rohrhuber, and Nick Collins. 2014. “Special Issue on Live Coding.” Computer Music Journal 38 (1).

Nilson, Click. 2007. “Live Coding Practice.” In New Interfaces for Musical Expression (NIME).

Noble, James, and Timothy Jones. 2014a. “[Demo Abstract] LileBits Synth Kit as a Physically-Embodied, Domain
Specific Functional Programming Language.” In FARM.

———. 2014b. “Livecoding the SynthKit: lileBits as an Embodied Programming Language.” In VISSOFT.

Russell, Bruce, ed. 2012. Erewhon Calling: Experimental Sound in New Zealand. e Audio Foundation; CMR.

Ward, Adrian, Julian Rohrhuber, Fredrik Olofsson, Alex McLean, Dave Griffiths, Nick Collins, and Amy Alexander. 2004.
“Live Algorithm Programming and a Temporary Organisation for Its Promotion.” In READ_ME — Soware Art and Cul-
tures, edited by Olga Goriunova and Alexei Shulgin.


	Introduction
	The littleBits SynthKit
	Livecoding with littleBits
	Acknowledgements
	References

