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ABSTRACT

Live coding control of machine listening processes, or more radically, machine listening control of live coding, provides
an exciting area of crossover between two research frontiers in computer music. is article surveys the state of the art,
and reports a number of experimental projects that point to potentially productive further directions.

1. Introduction

Live coding has established itself as a viable and productive method of computer music performance and prototyping,
embracing the immedicacy of modern computer programming languages (Collins et al. 2003; Ward et al. 2004; Blackwell
and Collins 2005; Brown and Sorensen 2009; Collins 2011; McLean 2011; Magnusson 2014). New avenues in interfacing for
programming are being embraced, including tangible computing of unit generator graphs and musical sequences (see for
exampleMónica Rikić’s buildacode), natural language processing (e.g., Craig Laa’soth) and computer vision (e.g., Nik
Hanselmann’s bodyfuck (2009) brainfuck interface). Performance ventures range from the current vogue for algoraves,
showcasing generative and interactive creation of electronic dance music (Collins and McLean 2014) to contemporary
dance and live arts.

Complementing existing work, this paper explores the interaction of live coding with machine listening, from listening
functionality within existing performance systems towards the use of live audio analysis as programming interface itself.
Although there are some existing projects which have utilised machine listening components, this area of computer
music has received less aention in live coding, perhaps because of its technical challenges. Machine listening is not a
solved problem, and whilst such elements as realtime monophonic pitch tracking, percussive onset detection and timbral
feature detection are by now a staple part of computer music environments, more involved polyphonic pitch tracking,
auditory scene analysis and live music information retrieval inspired work remains at the cuing edge (Casey et al. 2008;
Klapuri and Davy 2006). It is implausible to claim any parity of machine algorithms to human listening at the present
time, though many interesting artificial listening resources have been developed.

e paper proceeds aer some further review of the confluence of live coding and machine listening within live code
performance, to experiments of the author pointing to further possibilities for interaction.

2. Maine listening as resource within a live coding performance system

Musical live coding performance systems have predominantly explored deterministic and probabilistic sequencing of
samples and synthesized sound events, driven from an interpreted or jit-compiled textual or graphical computer music
language. Audio input, and particularly live analysis of audio input, is much rarer than direct synthesis.

Nonetheless, the work of Dan Stowell on beat boxing analysis (Stowell 2010) and associated MCLD live coding and beat
boxing performances is a good example of the co-occurence of machine listening and live coding (Stowell and McLean
2013). Mahew Yee-King has also embraced dynamic live code control of listening systems, notably in improvised col-
laboration with Finn Peters (Yee-King 2011) with Markovian and evolutionary systems reconfigured on-the-fly to track a
saxophonist-flutist. e feedback system between live coder and dancer set up byMcLean and Sicchio (2014) utilises both
computer vision (tracking the dancer) and machine listening (onset detection on the audio output), perturbing graphical
placement of code elements within McLean’s wonderfully idiosyncatic Texture language to affect choreographic instruc-
tion and audio synthesis code respectively. Such feedback loops of audio and video analysis were anticipated by the now
defunct audiovisual collaboration klipp av, who live coded and live remapped audiovisual algorithms simultaneously in
SuperCollider and Max/MSP (Collins and Olofsson 2006).
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2.1. Maine listening as controller alongside live coding

Machine listening unit generators are available to the live coder, and highly beneficial in creatingmore involved synthesis
patches, as well as feature adaptive processing of live audio input. Examples are provided here within the SuperCollider
audio programming language, much used for live coding and well suited to live analysis and synthesis. For instance, an
abstract feedback loop can easily be constructed where an audio construct’s output is analyzed, the analysis result used
to feedback into control of the audio, and parameters of this graph (or the complete graph) made available for live coding
manipulation:

(

a = {arg feedbackamount = 0.5;

var feedback, sound, sound2, freq;

feedback = LocalIn.kr(2);

//source sound, feedback into first input (frequency)

sound = Pulse.ar(

((1.0-feedbackamount)* (LFNoise0.ar(2).range(10,1000)))

+

(feedbackamount*feedback[0]),

feedback[1]

);

freq = Pitch.kr(sound)[0]; //pitch detection analysis of output sound frequency

LocalOut.kr([freq,(freq.cpsmidi%12)/12.0]); //send feedback around the loop

sound

}.play

)

a.set(\feedbackamount, 0.98) //change later

Triggering sound processes from analysis of a driving sound process, through the use of onset detection, provides a
typical use case (derived rhythms can be productive, for instance via onset detection interpretation of a source sound).
e very typing of a live coder can spawn new events, or combinations of voice and typing drive the musical flow:

(

a = {arg threshold = 0.5, inputstrength = 0.1;

var audioinput, onsets, sound;

audioinput = SoundIn.ar;

//run onset detector on audioinput via FFT analysis

onsets = Onsets.kr(FFT(LocalBuf(512),audioinput),threshold);

//nonlinear oscillator is retriggered by percussive onsets

sound = WeaklyNonlinear2.ar(inputstrength*audioinput,reset:onsets, freq: Pitch.kr(audioinput)[0] );

sound

}.play

)

a.set(\threshold, 0.1, \inputstrength,0.01)



a.set(\threshold, 0.8, \inputstrength,0.7)

It is possible to experiment with a much larger number of interesting processes than onset and pitch detection, whether
timbral descriptors, or more elaborate sound analysis and resynthesis such as utilising a source separation algorithm to
extract the tonal and percussive parts of a signal.

2.2. e Algoravethmic remix system

Figure 1: Algoravethmic session in progress with live coding mixer and onset detection GUI

An example of a more involved relationship between machine listening algorithms and live coding control is the Algo-
ravethmic system (for SuperCollider), which empowers live remixing of an existing source work. e audio from the
piece to be remixed is tracked by a variety of feature detectors, including beat tracking, onset detection, timbral and
pitch content, and the results fed to control busses for re-use in feature-led synthesis and sound processing . e live
coder works on patches exploiting the source-driven data to produce their remix. e live remix process is carried out
within a live coding mixer, so that many different coded layers can be interwoven, including processing of the original
source audio according to feature-adaptive effects and re-synthesis driven by feature data (Verfaille and Arfib 2001; Park,
Li, and Biguenet 2008).

Line by line commands from a typical session might look like:

a = Algoravethmic();

(



//fluctuate with beat tracking

l.addnf(\origbasssweep,{

BLowPass.ar(

DelayN.ar(InFeedback.ar(a.busnum,1),0.02,0.02)*5,

SinOsc.ar(a.beatkr(3)/4).range(200,3000)

)

})

)

//l contains the live coding mixer system, to be sent new sounds on the fly

//drum triggering

(

l.addnf(\kickhit,{

PlayBuf.ar(1,~dubstepkicks[1],trigger:a.onsetkr(4))*3

})

)

l.addnf(\wobblyacid,{Blip.ar(a.pitchkr(0),a.timbrekr(3).range(1,100));})

//original track, delayed to help sync after machine listening delay

l.addnf(\original,{DelayN.ar(InFeedback.ar(a.busnum,1),0.02,0.02)*5})

where the beatkr, pitchkr, onsetkr and timbrekr are accessing different feature detector outputs on particular control
busses.

Figure 1 illustrates the live coding mixer and a GUI for the bank of onset detectors (with threshold sensitivity controls)
used for triggering new percussive events from the track to be remixed. Two of these detectors are adaptations of code
from (Collins 2005; Goto 2001) specifically for kick and snare detection, implemented in custom SuperCollider UGens.

3. Maine listening as programming interface

e aforementioned graphical language perturbations of McLean and Sicchio (2014) provide a rare precedent for machine
listening actually influencing the code interface itself. In this section two examples consider machine listening control
of the instruction state list and memory contents of a running sound synthesis program. is should be understood
as the radical adoption of machine listening as the basis for writing computer programs. In the two examples here,
the programs so generated act within novel small scale programming languages specialised to musical output, but it is
possible to envisage a machine listening frontend as the entry point to a more general purpose programming language.

3.1. TOPLAPapp variations in the web browser

TOPLAPapp is a promotional app for the TOPLAP organisation by this author, originally released as a free and open
source iPhone app, and now available within the web browser in a javascript implementation thanks to Web Audio API.
Javascript has enabled some immediate experiments extending the core TOPLAPapp instruction synthesis engine, for
example, including a convolution reverb.

A version of TOPLAPapp with machine listening control has been devised (Figure 2). Machine listening with Web Audio
API is a lile more involved due to permissions requirements, but still feasible give or take a user having to allow a served
web page access to their microphone. Indeed, the core code calls come down to:

navigator.getUserMedia({audio:true}, initAudio, function(e) {

alert('Error getting audio');

console.log(e);

});

function initAudio(inputstream) {

http://composerprogrammer.com/livecode/toplapappjs/toplapapp.html


audiocontext = new AudioContext();

audioinput = audiocontext.createMediaStreamSource(inputstream);

node = audiocontext.createScriptProcessor(1024, 1, 1); //mono in, mono out

audioinput.connect(node);

node.onaudioprocess = processAudio; //sample by sample processing function

}

Figure 2: TOPLAPapp with machine listening front end

As a prelude to live spectral feature extraction, Nick Jones’ .js code was co-opted; spectral centroid and 60% spectral
energy percentilewere then straight forward to calculate. e featureswere accumulated overmultiple (non-overlapping)
FFT frames to form feature means, where the duration between means is available as a user set parameter. For each new
mean, one state in TOPLAPapp’s limited instruction set is updated, and one associated state value, according to:

stategrid.states[statepos] = Math.floor(5.9999*spectralcentroidmean);

stategrid.setSlider2(statepos,spectralpercentilemean);

statepos = (statepos +1 )%(stategrid.numunits);

Aside from vocal control of the state engine mediated via human ears, the system can also be sent into direct feedback,
for example, by the simple expedient of having the built-in mic in a laptop allow feedback from built-in speakers, or via a
virtual or physical patch cable. e reader can try out the process here with a recent compatible browser such as Chrome,
and is encouraged to make a variety of brightnesses/frequency ranges of noise to reach different states and levels. e
app can find itself restricted to only one state if le unstimulated by input, but also has allowed access to novel sonic
outputs that the previous drag and drop state construction interface was too slow and deliberative to quickly explore,
and the random function didn’t tend to find.

https://github.com/dntj/jsfft
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3.2. Timbral instructions

A further experiment in machine listening control of a program was conducted in SuperCollider, with instruction states
again determined from extracted features (in this case, perceptual loudness and spectral centroid). As the program
stepped through the instruction list, it in turn influenced amemory array of floating point numbers, which are themselves
used as source data for a monophonic pitched sequence (Figure 3).

Figure 3: Machine listening to instruction state engine to memory sequencer demonstration screenshot

Each instruction slot has a corresponding state value (from 0.0 to 1.0 for easy remapping) to influence the result of the
instruction applied to the memory. e (cyclic) instruction list is stepped through (clocked) at the same rate as the
memory block (a slider lets a user set the clock rate), though their relative positions can diverge. e list of instructions
in pseudocode are:

0) NULL : do nothing

1) JUMP : move in memory block to a position given proportionally by the state value

2) RJUMP : move in memory to a new random position

3) LOOP : loop on current memory location 2 to 8 times

4) SET : set memory contents at current location to state value

5) COPY : store state value for later use

6) PASTE : set memory contents at current location to last stored value

7) RAND : randomise memory contents at current location

e abstract relationship of the musical result to the machine listening is that from the contents of the memory block to
the limited instruction set state engine which modulates it. Although there is lile sense of reproducible controllability,
there is a certain virtue to the unpredictable outputs easily obtained through audio input.

3.3. Further possibilities

e examples elucidated above are by no means exhaustive and are only meant to promote some of the potential inter-
actions of machine listening and live coding.

A possibility not yet seriously exploited in live coding practice is the use of speech recognition to drive a live coding
language. Hacking something together is perfectly possible using current generation tools; indeed, the dictation and



speech system preferencewithin recent versions of OSX allows access to speech recognitionwithin any text environment,
including SuperCollider’s IDE.

Live coding the fundamentals of a machine listening algorithm itself (aside from basic control parameters like a threshold
or window size) remains a further tantilizing possibility. Aside from work to construct machine listening algorithms out
of existing UGens (for instance, a SuperCollider SynthDef for a custom onset detector), just-in-time compilation facilities
such as those in Extempore, Max/MSP’s Gen, chuck’s Chugins, or the ClangUGen for SuperCollider, provide routes to
the live coding of sample by sample analysis DSP.

Are there worthwhile musical purposes, or would effort in coding of such live analysis DSP just be time wasted that
could have been spent on details of the audio output? Well, changing the very nature of the computational listening
experience underlying a current musical texture would seem an interesting avenue. Live coding offers unconventional
takes on computer music performance, and for performance action to engage with an audio input tracking process as a
dependent component within a signal chain has potential in this light.

A further option, feasible within the research domain, is an automated machine listening critic. Machine listening and
learning over larger audio databases empowers this capability, and a specific corpus of live coding performances seems
a feasible target. Deployment in live coding performance remains speculative at present; performance systems with live
critics trained fromMIR processes over larger audio databases have already been built by this author, though the on stage
re-coding of such a critic is a challenge to come.

More unfeered speculation might ponder the future aesthetics of live coded machine listening work. Value may well be
placed on individualised languages, perhaps through speech recognition or other sound taxonomic classification enabling
coding to head to the territory of a unique constructed language between a given human and machine symbiont. A
partnership of human and computer may build such a language as they grow up together; the virtuosity acheivable
through such an interface, given substantial investment of learning, would be considerable, though it may only ever be
intended for private use. For the form of a performance, the blank slate starting point frequently used in live coding
extends straight forwardly from the blank page awaiting text to silence awaiting sound. Continuing the analogy, the
full slate performance beginning from pre-composed code can be paralleled by an existing sound, analyzed via machine
listening, the sound’s features initialising the live code system which must be performed within; this may provide an
alternative method of handover from performance to performance or performer to performer. Existing feedback systems
incorporating audio, visual and textual material can themselves be extended through additional pathways, allowing
generalised functions of multiple audiovisual and textual sources called via iteration or more complicated recursion.
is article has said less concerning the multi-performer situation of multiple channels of machine listening information
passed around a network, but interesting complexity lies therein. Whilst human listening remains the essential research
challenge and touch point, there is also potential for aesthetics of novel machine listening systems divergent from the
human ear; ultrasound and infrasound live coding, sensor data/live coding conglomerates, and the future artificially
intelligent live coders with alternative auditory capabilities may provide some inspiration to researchers and artists,
even if such systems will confound human audiences in further directions!

4. Conclusion

is paper has covered the conflation of live coding and machine listening, exploring different levels of re-configuration
for such live analysis processes. ere are a number of precedents, and this paper has also explored a number of projects
including example code meant to illustrate the potential.
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ABSTRACT
This paper presents a pattern language for user experiences in live coding. It uses a recently defined analytic
framework that has developed out of the Cognitive Dimensions of Notations and related approaches. The
focus on performance programming offers particular value in its potential to construct rigorous accounts of
the experiences of both performers (the live coder) and audiences. Although developed as an account of live
coding, the findings promise to be relevant to a wider range of performance programming contexts, which
could benefit from analysis in terms of live coding, if a systematic framework of this kind were available.
The paper  provides a  detailed analytic  commentary,  drawing on the broadly diverse body of  prior  live
coding practice, but using music live coding as a central running example. The findings demonstrate the
advantage of rigorous analysis from an independent theoretical perspective, and suggest the potential for
future  work  that  might  draw on  this  pattern  language  as  a  basis  for  empirical  investigations  of  user
experience, and as a theoretical grounding in practice-led design of new live coding languages and tools.

1. INTRODUCTION
The concept of  software patterns – construction techniques that can be applied in many situations – is
extremely well known in the software engineering industry, regularly applied by professionals and widely
taught to undergraduates (e.g. Larman 2004, Holzner 2006). However, Blackwell and Fincher have argued
(2010) that there has been a fundamental misunderstanding in the way this concept is being developed and
applied. They observed that the software engineering researchers who originally coined the term had not
intended it to be a catalogue of construction techniques, but rather based it on an analogy to the writing of
architect and design philosopher Christopher Alexander (1978). 
Alexander created the term  pattern language to describe his systematized observations of the ways that
people actually use and inhabit their built environment. He argued that buildings are shaped as much by
their  users  as  by  materials  and  construction,  and  that  it  is  useful  for  architects  to  have  a  systematic
description of the things users experience. An example is the pattern “light on two sides of a room”. This
might be achieved, for example, when an architect, builder or home renovator installs glass windows in two
different  walls.  However,  the  essence  of  the  pattern  is  a  description  of  the  experience  of  light,  not  a
prescription for achieving it (for example, by specifying how to place windows, what they are made out of,
or  even  whether  they  are  windows  at  all).  Alexander’s  pattern  language  is  a  systematic  collection  of
experience descriptions, not a set of rules for construction.
The goal of this paper is to apply an analogous approach to the study of the human context in which live
coding is  done,  in order to achieve a systematic collection of  descriptions of the user  experiences that
constitute live coding. Such a collection is potentially valuable both as a design resource (drawing attention
to new opportunities for live coding tools or languages) and a critical resource (providing a vocabulary with
which to describe the tools and languages of today).
The application of Alexander’s pattern language to software was originally proposed by Kent Beck and
Ward Cunningham (1987) and popularized in the form that is familiar today by the “Gang of Four”: Gamma,
Helm, Johnson and Vlissides (1994). The original analogy between software engineering and architecture
was clearly expressed by Richard Gabriel as follows:

Habitability is the characteristic of source code that enables programmers, coders, bug-fixers, and
people coming to the code later in its life to understand its construction and intentions and to
change it comfortably and confidently.  It  should be clear that, in our context,  a “user” is a



programmer who is called upon to maintain or modify software; a user is not (necessarily) the
person who uses the software. In Alexander’s terminology, a user is an inhabitant (Gabriel 1993,
emphasis added)

Subsequent extension of this work to user interface patterns (e.g. Tidwell 2005) has abandoned this insight
from Beck, Cunningham and Gabriel that Alexander’s ideas could be used to understand contexts where ‘a
“user” is a programmer’ as in the quote above. In most user interface ‘”patterns”, the user does not get to be
a programmer, and does not have the creativity and control that arises from programming. Blackwell and
Fincher (2010) argue that this situation may have arisen from misunderstanding of the original analogy,
which has become more widespread as other “patterns” publications rely on secondary sources rather than
the original publications by Beck and Cunningham. However,  live coding offers an ideal opportunity to
draw away from the (mis)understanding that may be implicit in the UI patterns community, and instead
refocus on the creative power of programming, and on source code as the primary medium of interaction,
rather than secondary to some other UI. Live coding is especially interesting because of the contrast it offers
to  mainstream  software  engineering  (Blackwell  and  Collins  2005).  By  considering  Alexander’s  (and
Gabriel’s) application of design patterns, the goal of this paper is to understand what it is that makes live
coding  distinctive,  in  relation  to  more  conventional  software  engineering,  and  to  other  kinds  of  user
experience.
The remainder of this paper is structured as follows.  This introduction is fleshed out,  first with a more
precise characterization of performance programming, followed by more detail of Blackwell and Fincher’s
critique of conventional software and user interface “patterns”, and then an introduction to their alternative
pattern language as it applies to live coding. The main body of the paper describes that pattern language in
detail, as the main contribution of the paper. A closing discussion reviews the validity and potential value of
this approach.

1.1 The User Audience of Performance Programming 

This  paper  takes  a  particular  interest  in  the  frequent  interpretation  of  live  coding  as  performance
programming.  Although  live  coding  can  be  interpreted  in  other  ways  (in  particular,  as  a  software
engineering  method,  as  an  educational  strategy,  or  as  a  creative  medium),  the  performance  context
introduces the key dynamic between the performer and audience.  This dynamic immediately highlights
many of the trade-offs that are inherent in the varieties of user experience captured by pattern languages. In
particular, it is understood that performers and audiences have different experiences – a factor that is often
neglected in the implicit universalism of software engineering methodology, and in mainstream theoretical
research into principles of programming languages.
The performance context addressed by this paper can be understood primarily in terms that are familiar
conventions of art-coding – where the code is written by a performer on stage, with a projection screen
displaying the code as a stage backdrop, and the audience are either dancing (at an algorave), or sitting (in a
concert/recital  setting).  This  conventional  layout  might  be  varied  slightly,  for  example  when  the
performance  accompanies  a  conference  talk,  when  the  live  coder  is  providing  background  music  at  a
function, or in a mixed genre variety show or cabaret context. However, the observations in the paper are
also  applicable  to  other  presentation  formats  that  maintain  the  performer/audience  distinction,  but
replicated in digital media. In particular, video of live coding performances, whether recorded in one of the
settings already described, or created specifically for online distribution, attracts larger audience numbers
than concerts and algoraves.
The findings from this paper are also relevant to a further, perhaps even more widely viewed, online genre –
the programming screencast. Screencasts are often recorded from a live ‘performance’, but typically focus
on demonstrating software skills, or the features of software development tools, rather than on recording a
stage performance. There is already substantial overlap between these genres and live coding as understood
at this conference, for example in Sam Aaron’s tutorial introduction How to Hack Overtone with Emacs1. Of
course screencasts of art-coding are a minority interest by comparison to “performances” of programming
with mainstream tools, whether tutorials such as Data Driven Programming in Haskell2 or exhibitions of skill

1 https://vimeo.com/25190186
2 https://www.youtube.com/watch?v=045422s6xik



by popular coding celebrities such as Minecraft developer Notch3. The recent launch of a dedicated site
(www.livecoding.tv) for performances of this kind suggests that this trend will continue to increase.
In the remainder of the paper, I assume for simplicity of presentation that the performer is creating music
through live coding. I therefore use examples from music to illustrate the kinds of information structure
involved in code. However, it is intended that these observations should apply equally to other live coding
environments controlling other media – for example, my own Palimpsest system for live coding of visual
imagery (Blackwell 2014), as well as the games, data analytics and software engineering examples above.

1.2 Patterns of User Experience

A key assumption of the presentation in this paper is that conventional uses of the term “pattern language”
in software  engineering and in human-computer  interaction  are  based  on a  misunderstanding of  Beck,
Cunningham and Gabriel’s original analogy between programming and architecture (Blackwell and Fincher
2010).  This  paper  is  therefore  not primarily  concerned  with  “software  design  patterns”  as  presented  in
Gamma et al (1994) and many other texts. Blackwell and Fincher (2010) argue that those texts are concerned
mainly with construction techniques, rather than user experiences. This paper is particularly not concerned
with  “user  interface  patterns”,  as  presented  in  many  HCI  texts  and  resource  sites  (e.g.  http://ui-
patterns.com/) which collect examples of specific construction techniques by analogy to software design
patterns. As noted in the introduction to this paper, Blackwell and Fincher (2010) argue that this literature
continues the misunderstanding of pattern languages, through a focus on construction of user interfaces
rather than the user experience of programming. Although it has been necessary to cite this literature in
order to avoid further misunderstanding, this paper will not make any further reference to either software
patterns or user interface patterns literatures.
Blackwell and Fincher’s proposal for the creation of a pattern language of user experience in software was
modeled closely on the Cognitive Dimensions of Notations (CDs) framework originally proposed by Thomas
Green  (1989),  greatly  expanded  by  Green  and  Petre  (1996),  and  incrementally  developed  with  many
collaborators since then, including the present author and many others. Several alternative perspectives on
CDs have been proposed, introducing corresponding approaches to tangible user interfaces (Edge 2006),
collaborative representations (Bresciani 2008) and several others. Blackwell and Fincher argued that the goal
of  CDs  was  far  more  closely  related  to  Alexander’s  pattern  language,  in  that  it  aimed  to  provide  a
vocabulary with which the designers of programming languages and other complex notations could discuss
the usability properties of those notations. An example CD was “viscosity” – the experience of using a
system in  which  small  changes  are  unreasonably  hard  to  achieve,  like  “wading  through  treacle”.  The
vocabulary was grounded in previous literature, but was a “broad brush” description rather than focusing
on details  of  the kind that can be measured  in controlled laboratory  studies,  or  time-and-motion style
exploration  of  efficiency in use.  The popularity  of  the framework arose in  part  because  labels  such as
“viscosity”  captured  intuitive  feelings  that  were  recognized  by  many  programmers  as  aspects  of  their
everyday experience, but aspects that they had not previously had a name for.
In the 25 years since Green originally proposed the Cognitive Dimensions of Notations framework, it has
been highly influential as an approach to understanding the usability of programming languages. The paper
by Green and Petre (1996) was for many years the most highly cited original paper to be published in the
Journal of Visual Languages and Computing, and a 10th anniversary issue of that journal reviewed the many
ways  in  which  the  framework  had  been  applied,  including  its  application  in  mainstream  commercial
programming products such as Microsoft’s Visual Studio (Dagit et al. 2006, Green et al. 2006). This paper
cannot  review  that  literature  in  detail,  but  it  extends  to  practical  design  guidance  for  programming
languages and APIs, evaluation methods for programming tools, theories of user interaction, requirements
capture methods and others.
Based on this substantial and diverse body of research, the author has developed a teaching guide, which
synthesizes a pattern language of user experience from all these different sources, variants and extensions of
the original CDs framework. This guide has been used in contexts that are intentionally distinct from the
programming language research that  has  been  the main focus  of  CDs until  now.  The most  substantial
application  to  date  has  been  in  a  graduate  course  within  a  professional  master’s  programme  for
sustainability leadership4. The goal of that course has been to highlight the role played by representation
systems, when global challenges are being negotiated in the presence of technology. It is taught to students
3 https://www.youtube.com/watch?v=rhN35bGvM8c
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with no prior experience of interaction design, using a case study of mobile GPS usage by indigenous people
negotiating  with  logging  companies  in  the  Congo  Basin  (Lewis  2014).  This  course  has  provided  an
opportunity to expand the concept of a representational pattern language to the widest possible extent,
encompassing considerations of physical context, language, culture, colonialism, embodiment, ecosystems,
distributed and locative media, and many others. 

1.3 Interrogating User Experience in Performance Programming

Starting from a pattern language that has been independently developed to analyse the user experience of
novel digital interventions, this paper now analyses performance programming from that perspective. The
goal of the analysis is to explore the ways in which performance programming exhibits (or does not exhibit)
patterns that are also seen in other digital media contexts. These patterns are expressed, as in the Cognitive
Dimensions  of  Notations  framework,  in  terms  of  interaction  with  an  information  structure,  where  the
structure is (in the digital music context) the configuration of synthesisers, samples, filters, instruments and
other software components that generate sound through digital means.
In keeping with mainstream practice of analysis using CDs, the patterns are used as a discussion tool,
providing a structured basis for systematic consideration of different aspect of user experience. In classical
CDs analysis, the characteristic user activities are first defined, together with a profile of dimensions that
are most salient for that kind of activity. Each dimension is then considered in turn, in order to observe how
the  particular  combination  of  notation  and  environment  will  support  the  identified  activities.  This
consideration also includes trade-offs where improvement on one dimension might result in detriment for
another, and possible work-arounds that users would engage in. Each of these elements has been included in
the following analysis, using appropriate analogies to the broader class of user experience patterns now
identified. 
The specific form in which the patterns are expressed below, using reference numbers to identify particular
patterns, allows the reader to cross-reference this analysis with a forthcoming publication in which the
patterns of user experience have been applied in another non-programming context, to the design of novel
diagrammatic representations (Blackwell in press). An appendix in that publication can also be consulted for
more detailed derivations that relate each pattern to the previous bodies of research from which is has been
developed,  in particular  drawing on the various iterations and variants of the Cognitive Dimensions of
Notations framework.

2. PATTERNS OF ACTIVITY IN PERFORMANCE PROGRAMMING
As with the architectural analyses of Christopher Alexander, patterns in the user experience of live coding
can be described from different perspectives.  This section contrasts the different modes in which people
interact with code, expressed as types of activity that are characteristic of  Interpretation,  Construction and
Collaboration activities. In each case, these are activities that have been observed in other areas of notation
and representation use, and this pre-existing descriptive framework is used to interrogate different aspects
of performance programming, stepping aside from conventional descriptions that are already familiar in the
critical discourse of live coding.
Each of these kinds of activity, as with the more limited set of activities that has previously been described
in the Cognitive Dimensions framework, is associated with a different profile of user experience patterns
that are found to be particularly salient in the context of that activity. These profiles are briefly indicated, in
the following discussion, using reference numbers referring to the experience patterns that will be described
later in the paper. This numbering scheme is consistent with (Blackwell in press), to allow further citations
of previous work.

2.1 Interpretation activities: reading information structure

In  the  performance  programming  setting,  the  audience  interprets  the  information  structure  that  the
performer constructs. Interpretation activities include: Search: The audience often follow the current cursor
position, but may also search for the code that was responsible for producing a particular audible effect. This
activity is enabled by patterns VE1, VE4, SE3, TE4 below. Comparison: The audience constantly compares
different  pieces  of  code  –  both  diachronically  (the  state  of  the  code  before  and  after  a  change),  and
4 Master of Studies at the Cambridge Institute for Sustainability Leadership 
http://www.cisl.cam.ac.uk/graduate-study/master-of-studies-in-sustainability-leadership



synchronically (comparing expressions on different parts of the screen in order to infer language features by
comparison). This activity is enabled by patterns VE5, SE4, ME4, TE2 below.  Sense-making: Live coding
audiences often have no prior expectation of the code that is about to be produced, so they must integrate
what they see into a mental model of its overall structure. This activity is enabled by patterns VE2, VE3, SE1,
ME1, ME3, TE3, TE5 below.

2.2 Construction activities: building information structure

The performer  is  defining,  in  various  layers,  an  abstract  syntax  tree,  a  synthesiser  configuration,  or  a
musical structure with audible consequences that will be perceived by listeners. The following activities
represent different approaches to the creation of this structure. Incrementation: The structure of the code
has been established, but a piece of information is added – e.g. another note, a synthesiser parameter. This
activity is enabled by patterns IE1, PE6 below.  Transcription: The structure is already defined, and the
performer needs to express it in the form of code.  Perhaps it has been rehearsed or pre-planned? This
activity is enabled by patterns ME2, IE2, IE3, IE5, PE2, PE5 below. Modification: Is a constant of live coding
– many live coders commence a performance with some code that they may modify, while even those who
start with a blank screen restructure the code they have written. This activity is enabled by patterns SE2,
ME5,  IE4,  TE1,  PE1,  CE1 below.  Exploratory design:  Despite the musically exploratory nature of live
coding,  it  is  rare for  complex  data structures  or  algorithms to be explored  in  performance – primarily
because an executing program can only gradually change its structure while executing. As a result, live
coding is surprisingly unlikely to exhibit the kinds of “hacking” behaviour anticipated when the distinctive
requirements of exploratory software design were highlighted by the Cognitive Dimensions framework.
This activity is enabled by patterns TE5, PE3, PE4, CE2, CE3, CE4 below.

2.3 Collaboration activities: sharing information structure

Descriptions  of  collaboration  were  added  relatively  recently  to  the  Cognitive  Dimensions  framework
(Bresciani et al  2008),  perhaps because the stereotypical  expectation is that programming is a relatively
solitary  activity.  However,  the  performance  programming  context  immediately  introduces  a  social  and
“collaborative” element, if only between the performer and audience. The activities that have been identified
in previous work include: Illustrate a story: Originally intended to describe situations in which a notation
is used to support some other primary narrative, this provides an interesting opportunity to consider the
audience (and performer) perspective in which the music is the primary medium, and the code, to the extent
it is shared, is there to support this primary function. This activity is enabled by patterns VE2, VE4, IE6, TE1,
CE3 below. Organise a discussion:  At first  sight,  this seems a foreign perspective to live coding.  An
algorave is not a discussion. But one might consider performance settings such as conferences, or comments
on online video, in which the audience do respond to the work. Does the code play a part? Furthermore, on-
stage improvisation among a group of performers can be analysed as discursive – does the code support
this? This activity is enabled by patterns ME5, IE2, TE2, PE3, PE4, CE4 below. Persuade an audience: What
is the visual rhetoric embedded in code? Many notation designers are reluctant to admit the rhetorical or
connotative elements of the representations they create, and these design elements of live coding languages
are often left relatively tacit. This activity is enabled by patterns VE3, SE4, ME2, ME6, IE5, TE3, TE5 below.

3. DESIGN PATTERNS FOR EXPERIENCE IN USE
This section  offers  a  comprehensive  description of  patterns in  user  experience  that  result  from, or  are
influenced by,  the design of different notations or tools.  As discussed in the previous section,  different
aspects of the performance programming context are enabled by different subsets of these patterns. This set
of patterns can potentially be used either as a checklist of design heuristics, for those who are creating new
live coding tools, or as a means of reflecting on the capabilities of the tools they already have. In particular,
there are many design decisions that carry different implications for audiences and performers, which would
appear to be an important critical consideration for the design and evaluation of performance programming
technologies.



3.1 Experiences of Visibility

Visibility  is  essential  to  performance  programming – the  TOPLAP manifesto  demands  “show us  your
screens.”5 It is therefore completely appropriate that this group of patterns so often comes before all others.
VE1: The information you need is visible:  The constraints imposed by the performance programming
context are extreme – a single screen of code is projected or streamed, in a font that must be large enough
for an audience to see. VE2: The overall story is clear: Can code be presented in a way that the structure
is  apparent,  or  might  it  be necessary  to  leave out  some of  the  detail  in  order  to improve this  overall
understanding? VE3: Important parts draw your attention: When there is such a small amount of code
visible,  perhaps  this  isn’t  much  of  a  problem.  However,  it  seems  that  many live  coders  support  their
audiences by ensuring that the current insertion point is prominent, to help in the moment engagement
with the performance.  VE4: The visual layout is concise:  At present, the constraints already described
mean that the importance of this pattern is unavoidable. VE5: You can see detail in context: This seems
to be an interesting research opportunity for live coding. At present, many live coding environments have
adopted the buffer-based conventions of plain text editors, but there are better ways of showing structural
context, that could be borrowed from other user interfaces, IDEs or screen media conventions.

3.2 Experiences of Structure

In the running example used in this paper, it is assumed that the “structures” implicit in the performance
programming  context  are  the  structures  of  music  synthesis.  However,  as  already  noted,  this  running
example should also be interpreted as potentially applying to other kinds of live-coded structured product –
including imagery, dance and others. In all  these cases, the understanding inherited from the Cognitive
Dimensions framework is that the information structure consists of ‘parts’, and relationships between those
parts. SE1: You can see relationships between parts: Are elements related by a bounded region, or lines
drawn between them? Do multiple marks have the same colour, orientation, or size? Are there many verbal
or numeric labels, some of which happen to be the same, so that the reader must remember,  scan and
compare?  SE2:  You can change your mind easily:  This is  a  critical  element  supporting  the  central
concern with improvisation in live coding.  The problems associated with this pattern were captured  in
Green’s most popular cognitive dimension of “Viscosity – a sticky problem for HCI” (1990). SE3: There are
routes from a thing you know to something you don't:   Virtuoso performers are expected to hold
everything  in  their  heads.  Would  it  be  acceptable  for  a  live  coder  to  openly  rely  on  autocompletion,
dependency browsers,  or API tutorials when on stage?  SE4: You can compare or contrast different
parts:  The  convention  of  highly  constrained  screen  space  means  that  juxtaposition  is  usually
straightforward, because everything necessary is already visible, allowing the performer to judge structural
relationships and the audience to interpret them.

3.3 Experiences of Meaning

In many programming languages, the semantics of the notation are problematic, because the programmer
must anticipate the future interpretation of any given element. In live coding, meaning is directly available
in the moment, through the concurrent execution of the program being edited. As a result, there is far
greater freedom for live coding languages to explore alternative, non-literal, or esoteric correspondences.
ME1:  It  looks  like  what  it  describes: Live  coders  often  use  this  freedom  for  a  playful  critique  on
conventional programming, with intentionally meaningless variable names, ambiguous syntax and so on.
ME2: The purpose of each part is clear: Within the granularity of the edit/execute cycle, the changes that
the audience perceive in musical output are closely coupled to the changes that they have observed in the
source code. As a result, “purpose” is (at least apparently) readily available.  ME3: Similar things look
similar: At present, it is unusual for live coders to mislead their audiences intentionally, by expressing the
same  behaviour  in  different  ways.  This  could  potentially  change  in  future.  ME4:  You  can  tell  the
difference between things: In contrast, live coding languages often include syntax elements that may be
difficult for the audience to distinguish. A potential reason for this is that the resulting ambiguity supports a
richer interpretive experience for the audience. This is explored further in CE2 and CE3 below. ME5: You
can add comments: A simplified statement of the cognitive dimension of secondary notation, this refers to
those aspects of the code that do not result in any change to the music. In performance, the text on the
screen offers a side-band of communication with the audience, available for commentary, meta-narratives
and many other intertextual devices. ME6: The visual connotations are appropriate: The visual aesthetic
5 http://toplap.org/wiki/ManifestoDraft



of live coding environments is a highly salient aspect of their design, as appropriate to their function as a
performance  stage  set.  The  muted  greys  of  Marc  Downie’s  Field,  the  ambient  radar  of  Magnusson’s
Threnoscope, the vivid pink of Aaron’s Sonic Pi, and the flat thresholded geometry of my own Palimpsest are
all distinctive and instantly recognisable.

3.4 Experiences of Interaction

These patterns relate to the user interface of the editors and tools. It is the performer who interacts with the
system,  not  the  audience,  so  these  are  the  respects  in  which the  greatest  tensions  might  be  expected
between the needs of  the two.  IE1: Interaction opportunities are evident:  This is a fundamental of
usability in conventional user interfaces, but the performance of virtuosity involves the performer giving
the impression that all her actions are ready to hand, perhaps in a struggle against the obstacles presented
by the “instrument”.  Furthermore, the performer may not want the audience to know what is going to
happen next – for example, in my own performances with Palimpsest, I prefer the source images that I
intend to manipulate to be arranged off-screen, on a second monitor that is not visible to the audience, so
that I can introduce them at the most appropriate points in the performance. The question of choice is
always implicit, but a degree of mystery can enhance anticipation. IE2: Actions are fluid, not awkward:
Flow is essential to both the experience and the illusion of performance. For many developers of live coding
systems,  this  is  therefore  one  of  their  highest  priorities.  IE3:  Things  stay  where  you  put  them:
Predictability  is  a  virtue  in  most  professional  software  development  contexts,  but  in  improvised
performance, serendipity is also appreciated. As a result, the representations are less static than might be
expected. An obvious example is the shift and shake features in Magnusson’s ixi lang, whose purpose is to
behave in opposition to this principle. IE4: Accidental mistakes are unlikely: On the contrary, accidents
are an opportunity for serendipity, as has been noted since the earliest discussions of usability in live coding
(e.g. Blackwell & Collins 2005). IE5: Easier actions steer what you do: In many improvising genres, it is
understood that the affordances of the instrument, of the space and materials, or of the body, shape the
performance.  However,  easy  licks  quickly  become  facile  and  trite,  with  little  capacity  to  surprise  the
audience.  As a result,  every new live coding tool  can become the starting point for a miniature genre,
surprising at first, but then familiar in its likely uses.  IE6: It is easy to refer to specific parts:  Critical
commentary,  education,  support  for  user communities,  and the collaborative discourse of rehearsal  and
staging all require live coding performers to talk about their code. Although ease of reference is seldom a
salient feature early in the lifecycle of a new tool, it becomes more important as the audience expands and
diversifies.

3.5 Experiences of Thinking

The kinds  of  thinking done by  the  performer  (creative  decisions,  planning the  performance,  analysing
musical  structures)  are  very  different  to  those  done  by  the  audience  (interpretation,  active  reception,
perhaps selecting dance moves). Both appear rather different to conventional professional programming
situations, which far more often involve reasoning about requirements and ways to satisfy them. TE1: You
don’t need to think too hard: Cognitive load, resulting from working memory and dependency analysis,
is less likely to be immediately challenging in live coding situations because both the code and the product
are directly available. However, audiences often need to interpret both the novel syntax of the language, and
the  performer’s  intentions,  meaning  that  they  may  (unusually)  have  greater  cognitive  load  than  the
performer – if they are concentrating! TE2: You can read-off new information: Purely textual languages
are unlikely to exhibit this property, but visualisations such as Magnusson’s  Threnoscope exhibit relations
between the parts beyond those that are explicit in the code, for example in phase relations that emerge
between voices moving with different velocity.  TE3: It makes you stop and think: The challenge noted
for audiences in TE1 here becomes an advantage, because it offers opportunities for richer interpretation.
TE4: Elements mean only one thing: Lack of specificity increases expressive power at the expense of
abstraction, often resulting in short-term gains in usability. In live coding, the performer is usually practiced
in taking advantage of the available abstraction, while the audience may appreciate interpretive breadth.
TE5: You are drawn in to play around:  Clearly an advantage for performing programmers,  and less
problematic in a context where risk of the program crashing is more exciting than dangerous. However,
playfulness is supported by the ability to return to previous transient states (IE3).



3.6 Experiences of Process

Many conventional software development processes include assumptions about the order in which tasks
should be done – and this is less common in live coding. However, it is useful to remember that rehearsal
and composition/arrangement do involve some different processes that may not be involved in performance
situations (for example, Sam Aaron notes in another paper at this conference that he keeps a written diary
while rehearsing).  PE1: The order of tasks is natural:  Every user may have a different view of what is
‘natural’, although live coding audiences appreciate an early start to the music. PE2: The steps you take
match your goals:  Live coding is a field that shies away from prescription, and ‘goals’ often emerge in
performance. Nevertheless, IE5 results in recognisable patterns that may not have been conceived explicitly
by the performer. PE3: You can try out a partial product: Absolutely inherent in live coding – a ‘finished’
live coded program seems almost oxymoronic! PE4: You can be non-committal: Another high priority for
live-coded languages,  which often support  sketch-like preliminary definitions.  PE5: Repetition can be
automated:  Every  performing  programmer  is  aware  of  developing  personal  idiomatic  conventions.
Occasionally the language is extended to accommodate these automatically, but more often, they become
practiced in the manner of an instrumental riff, or encoded through muscle memory as a ‘finger macro.’
PE6: The content can be preserved: Some live coders habitually develop complex libraries as a jumping-
off point for improvisation (e.g. Andrew Sorensen), while others prefer to start with an empty screen (e.g.
Alex McLean). Whether or not code is carried forward from one performance to another, it might be useful
to explore more thoroughly whether the temporality of the performance itself can be preserved, rather than
simply the end result.

3.7 Experiences of Creativity

In  analysis  of  conventional  software  engineering,  this  final  class  of  experience  might  appear  trivial  or
frivolous. However, when programming is taking place in a performing arts context, ‘creativity’ (of some
kind) is assumed to be one of the objectives.  This suggests that these patterns will be among the most
valued. CE1: You can extend the language: Live coders constantly tweak their languages, to support new
performance capabilities, but this most often happens offline, rather than during performance. Language
extension in performance is conceivable, and may offer interesting future opportunities, but would greatly
increase the challenge to audience and performer in terms of  TE4.  CE2: You can redefine how it  is
interpreted:  The predefined  semantics  of  most  mainstream  programming  languages  means  that  open
interpretation  may  be  impractical.  But  in  live  coding,  opportunities  for  increased  expressivity,  and
serendipitous reinterpretation, suggest that this experience is likely to be more highly valued. CE3: You can
see  different  things  when  you  look  again:  This  is  a  key  resource  for  inspiration  in  improvised
performance contexts, to generate new ideas for exploration, and to provide a wider range of interpretive
opportunities for the audience. As a result, this represents one of the most significant ways in which live
coding languages differ from conventional programming languages, where ambiguity is highly undesirable.
CE4: Anything not forbidden is allowed: Many programming language standards attempt to lock down
the semantics of the language, so that all possible uses can be anticipated and tested. In creative contexts,
the  opposite  is  true.  An  execution  result  that  is  undesirable  in  one  performance  may  be  completely
appropriate  in  another,  and  digital  media  artists  have  often  revelled  in  the  glitch  or  crash,  as  a
demonstration of fallibility or fragility in the machine.

4. DISCUSSION
This paper has investigated the nature of user experience in live coding, and also in other contexts that
might  more  broadly  be  described  as  performance  programming,  characterized  by  the  presence  of  an
audience  observing  the  programming  activity.  This  investigation  has  proceeded  by  taking  an  existing
analytic  framework  that  describes  patterns  of  user  experience,  in  the  style  of  an  architectural  pattern
language, and has explored the insights that can be obtained by considering performance programming
from the perspective of this framework. 

4.1 Validity of the Analysis

The validity of this analysis relies on two precautions: Firstly, the existing framework is applied without
modification or adaptation. Rather than selecting elements from the framework by convenience or apparent
surface  relevance,  the  structure  and  content  of  the  existing  framework  has  been  applied  without
modification. This provides an opportunity for disciplined consideration of all possible factors, whether or



not they might have been considered to be relevant at first sight. This first precaution has demonstrated
some novel advantages, for example by drawing closer attention to the user experience of the audience in
performance programming situations.  The value of  this precaution can be understood  by contrast  with
previously less successful attempts to apply the Cognitive Dimensions framework, in which researchers
ignored, or redefined, particular dimensions that were inconvenient or inconsistent with their assumptions
(as discussed in Blackwell & Green 2000).
The  second  precaution  is  that  the  framework  chosen  for  application  is  intentionally  tangential  to  the
existing  analytic  approaches  that  have  been  applied  in  live  coding,  thus  offering a  form of  qualitative
triangulation. There have been previous analyses of live coding from the perspective of performance studies,
and of programming language design. Although these prior analyses have resulted in a useful emerging
body of theory, there is a tendency for such bodies of theory to be self-reinforcing, in that analytic design
discourse is grounded in the body of theory, and empirical investigations of its application reflect the same
assumptions. In contrast, the framework applied here was developed for analysis of visual representation
use, in situations ranging from central African forests to Western business, education and domestic settings.
Although  drawing  heavily  on  the  approach  pioneered  in  the  Cognitive  Dimensions  of  Notations,  this
framework has subsequently been adapted for an audience of visual representation designers, with many
changes of terminology and structure (Blackwell in press). One consequence is that the terminology may
appear less immediately relevant to live coding than is the case with familiar Cognitive Dimensions such as
secondary notation. But the consequent advantage is to defamiliarise the discussion of user experience in
live  coding,  allowing  us  to  achieve  a  systematic  analysis  from  a  novel  perspective,  and  an  effective
triangulation on the understanding of interaction in live coding.

4.2 Applying the Analysis

The next phase of this work is to apply the results of this analytic investigation as a starting point for
empirical study and practice-led design research. The immediate opportunity for empirical study is to use
the findings from this investigation as a coding frame6 for the analysis of qualitative descriptions of user
experiences  in  performance  programming,  whether  taken  from  audiences  or  from  performers.  The
framework  will  be  beneficial  to  such  situations,  by  providing  a  theoretically-grounded  organisational
structure rather than an ab initio categorisation. There is also a possible advantage for the framework itself,
in that new sources of experience reports, from situations as different as algoraves and screencast videos,
may identify new patterns of experience that have not previously been noticed in other programming and
formal representation contexts.
The second opportunity is to use the results of this analysis as a resource for design research. This pattern
language of user experience in performance programming retains the potential of the original Cognitive
Dimensions framework, that it can be employed as a discussion vocabulary for use by language designers. It
points to design opportunities, as noted at points throughout the above analysis. It offers the potential for
reflection on the consequences of design decisions. It draws attention to known trade-offs, although this
paper does not have space for the detailed listing of those trade-offs described elsewhere (Blackwell  in
press). Finally, it  offers the potential for use as an evaluative framework, for example in the manner of
Heuristic Evaluation, or as a basis for the design of user questionnaires, in the manner of the Cognitive
Dimensions questionnaire (Blackwell & Green 2000).
The discussion of live coding in this paper has primarily drawn on music live coding systems to illustrate
the relationship between structure and representation. This choice was made in part because the author is
more familiar with music than with other performing arts. However, it is intended that this analysis can be
applied to many other arts contexts,  and the author’s  preliminary investigations have already included
study of dance (Church et al. 2012) and sculpture (Gernand et al. 2011), as well as experiments in live-coded
visual imagery (Blackwell & Aaron 2014). Current live coding research by others, for example McLean’s
performances  of  textile craft practices such as  knitting and weaving,  is  also likely to benefit from this
analytic approach.

5. CONCLUSIONS
Systematic description of user experience is a valuable design resource, as noted in the development and
subsequent popularity of Christopher Alexander’s pattern language for the design of the built environment.
6 Note that the term “coding frame” is used here as a technical term in qualitative data analysis, which has no relationship to “coding” of software.



The idea of the pattern language has been appropriated enthusiastically in software engineering and in user
interface design, although in a manner that has lost some of the most interesting implications in studying
experiences of computation. Live coding, and performance programming more broadly, represent distinctive
kinds of user experience. The user experiences of performance programming can be analysed in terms of the
distinct ways that performers and audiences use and interpret the representations that they see. As with
Cognitive Dimensions of Notations, different types of experience result  from the ways that information
structures are represented and manipulated. In live coding contexts, these information structures must be
mapped  to  the  structural  elements  by  which  art  works  are  constructed  and  interpreted.  The resulting
framework  offers  a  basis  for  the  analysis  of  live  coding  experiences,  as  well  as  for  reflexive  critical
understanding of the new languages and tools that we create to support live coding.
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Abstract

This paper introduces Code Lisa: a collaborative programming environment in the browser that allows
users to program one cell in a grid of cells. The cells can react to each other, but also to the environment,
represented by sensor values on an EV3 Lego Mindstorms robot. By programming reactions to each other and
to the sensors, a group of Coda Lisa users can together create a living, interactive art work. Users program the
cells using JavaScript, and can experiment locally with their cell in a live editor created for this purpose, which
shows a preview of the cell’s behaviour. Once ready, the cell’s program can be submitted to the server so it can
be rendered in the shared grid of cells, by a second Coda Lisa client application: the viewer. In addition to the
implementation of Coda Lisa, this paper also describes several plans for future development.

1. Introduction

In recent years, live programming has attracted the attention of many, in all sorts of di�erent domains, from
education [1] to music programming [4]. The liveness of programming languages and environments enables quick
feedback, which in turn powers creativity. Modern web browsers make it easier than ever to support live coding,
because they are sophisticated platforms for rendering and scripting.

Programming environments which enable users to create drawings or more elaborate artwork are common, starting
in the eighties with the Logo programming language to modern day with sophisticated tools like Processing [5].

In this paper we propose Coda Lisa, a program that enables making art through collaborative live programming.
Coda Lisa is a live coding environment that enables users to collaboratively create a living artwork. Code Lisa
users control a single cell in a grid, where other cells are drawn by other Coda Lisa users. By reacting to other
cells, as well as to the physical environment around the players by reading sensor values, cells can be programmed
to behave interactively, and together form one artwork as shown in the Figure below.

This paper describes the implementation of Coda Lisa and proposes a number of future extensions to be developed.

2. Implementation

2.1. Editors

The central component of Coda Lisa is a canvas divided into a grid of cells, whose contents are controlled by the
users. This is the view shown in Figure 1.

Coda Lisa users control their cell by implementing two JavaScript functions: an init function and a draw
function. The draw function can be declared as taking 1 to 3 arguments which will be explained below.

In the most basic form, draw takes a cell argument that represents the cell that an agent program is about to
draw into. Users write code that will set color values for the pixels in the cell. For example, a red circle can be
created with this piece of code:
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function draw(cell) {
for (var y = 0; y < cell.h; y++) {

for (var x = 0; x < cell.w; x++) {
var color;

if (dist(x, y, 50, 50) < 10)
color = new Color(255, 0, 0);

else
color = new Color(255, 255, 255);

cell.set(x, y, color);
}

}
}

When run locally, in a user’s browser, the code runs in the central cell of a grid of 9 cells, as shown by the picture
below:

Figure 1: The Coda Lisa editor: left is a list of all available programs, in the middle the JavaScript code can be entered,
right, a preview of the cells behavior is shown

The above interface is a Coda Lisa client application called the editor and is live: On every code change, the
functions are compiled, and when compilation succeeds the init and draw functions on the data object are
replaced, while the draw function keeps being executed at 30Hz.

To allow the user to have persistent data between live code reloads, we store data on a long-lived object that is
outside the user code, and we call init as few times as possible. We use the prototypal facilities of Javascript to
move the functions onto the object after they have been compiled.

init is in executed in the context of the data-holding object the �rst time the agent is run, and again on-demand
when the user wants to change the init code. The context allows the user code to use this. to access
long-lived variables.

When a user is satis�ed with his cell’s programming, she can submit the code to the Coda Lisa server. The
execution of the user programs is then run by a second client application called the viewer, which executes all
programs together on a big screen. This is when the user’s program can start to interact with the cells created by
other Coda Lisa users. When a user submits the code, the viewer calls the init method which is run once, and
then calls the draw function at 30 Hz. The draw function has a time parameter that users can read (where time
is given in fractional seconds), which allows users to create animated cells. For example, by changing the code of
the previous example slightly, we create a red circle that moves left at a rate of 10 pixels per second:

function draw(cell, t) {
for (...) {

var x0 = modulo(50 - t * 10, cell.w);



if (dist(x, y, x0, 50) < 10)
color = new Color(255, 0, 0);

// ...
}

}

2.2. The environment

In addition to the simple variant of the draw function in which just time is used as a parameter, users can also
have their cell react to the environment. The �rst environmental variable is the color values of the canvas in the
last iteration. The cell object that is passed to the draw function has a get function, which will return the
color of any pixel, relative to the cell’s own coordinate system. By mixing past and future colors in the cell’s own
region, the program can create blending e�ects.

An agent cannot only write but also read pixels outside its own cell’s boundaries, but an agent is not allowed
to write outside its own cell. This reading outside the cell gives a user the opportunity to respond to the pixels
in neighbouring cells. She can, for instance, create a re�ection cell that mirrors a neighboring cell. To test their
programs in this manner in the 3x3 grid in their local editor, the cells surrounding cells by default come pre-loaded
with an agent program that responds to mouse events by painting pixels.

Finally, users can incorporate sensors values from the real world into their programs. For this, we have built
a Lego EV3 Mindstorms robot with touch, color, sound and distance sensors. Using a simple request-response
protocol over a serial connection to the EV3 brick, the sensor values are exposed to Coda Lisa programs in a third
argument of the draw function.

For example, the following program draws a circle whose radius depends on the value of the distance sensors,
with smooth transitions by blending the pixels of the previous frame:

function draw(cell, t, sensors) {
for (...) {

var color;

if (dist(x, y, 50, 50) < sensors.dist * scale)
color = new Color(255, 0, 0);

else
color = new Color(255, 255, 255);

color = color.mix(cell.get(x, y), 0.7);

cell.set(x, y, color);
}

}

3. Related work

We took our inspiration for Coda Lisa from various existing systems. We for example looked at Processing, a
programming language originally developed as a tool to teach kids to program, which evolved into a tool for
artists and researchers [5]. Similar environments are Gibber [2], and Lich.js [3], both browser based live coding
language for music and graphics.

Coda Lisa shares the idea of being a programming environment for art with these systems, but, while they do
support some form of collaboration, they are not solely meant for it, like Coda Lisa is.



4. Conclusions & Future extensions

This paper describes a live programming environment in the browser, which lets users live program agents to
control cells in a grid. The cells can vary depending on time and their previous color values, but can also react
to colours of adjacent cells, or EV3 sensor values. In this way, Coda Lisa users collaboratively program a living,
interactive artwork.

This paper presents a �rst version of Coda Lisa, which to date only has been demonstrated and used at one event.
We foresee the following future extensions.

4.1. More environmental variables

A �rst extension would be to add more environmental variables in the form of live data streams, like stock tickers,
weather data or seismographic information.

Furthermore, we could allow people to connect their mobile devices to the shared canvas, not only to act as an
additional viewer, but also to send the devices sensor values, like gyroscopic sensors, to Coda Lisa, or to use the
devices camera as input for a certain cell.

Finally, it would be great to extent Coda Lisa such that it can be played on a device with touch capabilities and
have cells react to the screen being touched.

4.2. Better debugging and more directness in the editor

When users programmed their cells in the �rst Coda Lisa workshop, we noticed the need for more support in
understanding the behaviour of their cells. What would greatly help here are features like the possibility for a
user to rewind their animation and replay it slowly. When we ran the workshop, we noticed users mimicking this
type of debugging by inserting sleep commands in their code, so this is something Coda Lisa should support.
To make the replay more insightful, we could even highlight the current line of code being executed to improve
understandability and make Coda Lisa more suitable for educational purposes.

4.3. A shared canvas

Finally, we would like to explore the possibility to, instead of dividing the canvas into cells, have all agents share
the canvas. This increases opportunity for aesthetically pleasing compositions, as the grid structure leads to sharp
edges in the �nal composition. However, this will also increases the complexity of the programming, both on the
side of the user and on the Coda Lisa side.
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ABSTRACT
In  this  paper  we present  our  experience  of  having a  live  coder  amongst  acoustic  musicians  in  a  free
improvisation  orchestra.  The acoustic  musicians  in  the orchestra  had  no previous  experience  with  live
coding. We will discuss all the difficulties we experienced and the process for overcoming them, illustrating
our  observations  with  audio  excerpts  from some of  our  recorded  sessions.  We will  also  go through  a
discussion about the nature of the instruments and raise the question of how deeply the musicians should
understand code in order to effectively interact in the free improvisation context. Finally we propose a piece
for live coder and orchestra that artificially explores the different dimensions of an orchestra session.

1. INTRODUCTION
Both authors of this paper are members of a free improvisation orchestra1; Antonio is the live coder and
Miguel is the bass player. For 3 years we have been collecting thoughts, sessions records, performances
videos, and discussions related to the art of programming audio on the fly amongst other musicians using
classical acoustic instruments. In this paper we share these ideas and facts and some of our theories. We
discuss some exercises we use in order to develop a good interaction channel between the musicians and we
also propose  a piece  for  live coder  and orchestra  in  which we elaborate  on a  possibility  to tackle the
challenges in such a scenario.
Albeit sharing some concerns like participation, communication within the orchestra and with the audience,
our approach is different from those of other works relating improvisation and laptop ensembles or laptops
in ensembles (Burns 2012, Lee and Freeman 2014, Ogborn 2014). Although some of these groups incorporate
acoustic instruments occasionally, our orchestra is not based on laptops, but only features one live coder
joining instrumentalists playing alto and baritone saxophones, trombone, didgeridoo, flute + effects, double
bass, prepared piano, and voice + everyday objects.
Wilson et  al.  (2014,  2)  talk  about  the role of  “intervention mechanisms to facilitate aspects  of  musical
interaction that can be difficult to realize in strictly free performances”. They use networked music systems
for the exchange of information in a context of a laptop orchestra. But in our case we are using live coding
as a stand-alone instrument, and we are concerned about how the orchestra musicians can interact better,
understanding the live coder issues and possibilities. We think that by sharing what we have observed and
experimented with we can help and also hear back from other groups working in a similar context.

1Orquestra  Errante  (OE)  is  an  experimental  group  based  on  the  Music  Department  of  the  School  of
Communication and Arts at University of São Paulo, founded in 2009 as a laboratory to the practice of free
improvisation and reflections about its theories and territories.  OE membership is seasonal and variant,
usually composed by students and professors from the Music Department, with some sporadic students
from  other  departments.  OE  is  also  open  to  occasionally  hosting  visitor  musicians  from  outside  the
academy. In our weekly meetings we practice free improvisation sessions and also oriented exercises, with a
round of discussions after each piece. We keep crude records of our improvisations so our members can
access them for later reasoning and reflections for their research. Some samples of our work, which we refer
to later in this paper, can be found at soundcloud.com/orquestraerrante



OE members' background comes from classical music, and some also studied jazz. They have been through a
lot of instrument practice and conventional ear training, but only recently are also starting to explore audio
effects  and  electronics  as  part  of  their  set  of  tools,  and  getting  used  to  electro-acoustic  /  electronic  /
computer music repertoire and possibilities. In the first year of OE with live coding a common fact that we
were observing in our sessions was that most times the live coded sound acted as a set of background layers
with little influence on the acoustic musicians, while the live coder could not find a way to interact either.
However, by the time the group understood better the nature and range of live coding, and the live coder
got better at his activity, the group started to evolve towards a better interaction and wholeness. 
In the remainder of the article we will go through some thinking about free improvisation in Section 2, the
differences about the instruments involved in our group and their manipulation in Section 3, and then in
Section 4 we present the interaction issues we went through in our sessions. In Section 5 we describe an
interesting idea for a performance we developed, before concluding the text.

2. FREE IMPROVISATION (FI)
As a musical performance FI in a group presupposes an intentional collective and collaborative activity.
Involved musicians must, through sound, start a conversation which evolves in an uninhibited manner, and
each performer intervention simultaneously creates, modifies and draws the way (Costa 2003, 42) 2; as in a
spontaneous conversation, the subjects and their unfoldings are diverse. This metaphor highlights one of the
major characteristics of FI, that of the creator / interpreter role of each participant. Within an FI session the
unraveling of a performance is dictated merely by the interactions between them, in a sound flow shaped
along the  devir of  the  act.  Free  improvisers  play  a  musical  ludic  game not  expecting  the  victory,  but
individually proposing ideas that may or may not be corroborated by the collective (Falleiros 2012, 59) 3.
Costa (2007, 143) argues that “There is a presupposition that everything is impermanent and the forms are
provisional aspects of intermediations made feasible by unexpected and rhizomatic connections”.
Another aspect of FI is the deliberate act of trying to overcome established musical idioms in search of a
“non-idiomatic” improvisation (Bailey 1993, xii), and an openness to the possibility of using any sound in
the discourse.  In such a way free  improvisers are always looking for  different ways and techniques  to
extend their instruments, many times during the course of a performance. In such a way we can neither
know nor  expect  anything from a  FI  session.  There  is  the  potential  for  absolutely  anything regarding
sonorities and interactions. It is a collaborative (when in a group) experimentation process, radically striving
towards real time music creation. Usually there is no previous indication about the musical content, but FI is
also open to minimal scripts with any type of instructions that can be revealed in advance or when the
session is about to start.
Previous information about the other performers is not a prerequisite for 2 or more people to free improvise
together. Musicians should be able to interact based only on the sound they create and hear, not needing to
know anything about each other's instruments' sounds and way of playing (we address that problem later).
For instance, the bass player should be able to jam with the drummer even not knowing anything about
drum sticks or the relation between the different drums and their timbres. In such a way an active hearing is
a crucial  aspect  in FI;  Costa (2007,  143)  argues about  the necessity of a Schaefferian reduced listening,
abstracting “the sound sources, the musical meanings and the inevitable idiomatic gestures present in each
musician's  enunciations”.  In  other  words,  when free  improvising we should  focus  our  attention to  the
sonorous aspects of the instrumental actions.
Falleiros argues that along with this active listening, a promptness for a benevolent interaction is also a
must,  where “(...) improvisers are distant from manipulative or  polarizing actions,  (...) which drive the
listening in a previous direction that presents an established way to deal with”. This benevolent intention
resembles a chamber music orchestra attitude, in which “the first step to learn to correctly execute chamber
music is learning not to exhibit oneself, but to recede. The whole is not constituted by an auto-affirmation of
the individual voices” (Adorno 2009, 190, our translation). The same goes for FI, where this chamberistic
posture (courtoisie4) permeates through the intermediation of the sound fragments and enunciations.

2All translations from Costa were made by us from the original in Portuguese.
3All translations from Falleiros were made by us from the original in Portuguese.



3. MANIPULATING MUSICAL INSTRUMENTS
Some theories characterize the musical instrument as an extension of the body (Ihde 1979; ___ 1980 apud
Magnusson 2009, 1), assigning to the musician the role of improving this condition up to the point of being
able  to  fluently  express  musical  intentions,  or  as  put  by  Nijs  (2009,  2),  “(...)  the  musician  no  longer
experiences  a  boundary  between himself  and the  instrument”.  In  the context  of  improvised  music  this
ability is crucial, as usually there is no previous structure or composition to guide the interaction between
the  musicians  and  guarantee  coherence  in  the  music  created,  which  depend  then  on  the  performers'
sensibility and dexterity.
The body is fundamental in a music based on sounds and empirical gestures on the instruments. The FI
process is radically related to body and gesture, leaving no room for separation between body and mind
(Costa 2003, 94-95), so there is an inherent physicality in the musical practice which varies according to the
musician and the  instrument,  but  regardless  of  both,  conveys a  sensation  of  immediacy  from physical
stimulus to sound response. So, in other words, there is a body responsible for creating immediate sounds
using an acoustic instrument as an extension of the body.
Programming the computer on-the-fly, however, the relationship between musician and instrument changes
from a physical-mechanical (body-instrument) to a physical-abstract (body-code) one. Notice that although
we agree with Magnusson (2009, 1) when he interprets the computer instrument as a mind extension, we
still put it as an extension of the body, in part because the musician should write code, an action which
takes time on stage, and also because in an orchestra context the body is still there as part of the group and
as visual information to the other performers and audience.
Compared to acoustic instruments, it takes more time to realize a musical intention in an algorithm (which
then outputs sound). This lag comes both from the time needed to elaborate the algorithm and the actual
writing (sometimes done together), and regardless how fast a performer is in typing and how literate about
the  techniques  (Nilson  2007,  4),  unless  snippets  with  basic  blocks  and  specific  sounds  are  used,  the
implementation of a musical intention is not immediate. However, albeit imposing immediacy restrictions
on the performance, live coding enables the performer to implement gestures for the future. As pointed out
by Stowell  and McLean (2013, 3), “a live coder,  like any improvising performer,  is under pressure to do
something interesting in the moment. Live coders can use abstraction and scheduling so the notion of 'in the
moment' may be a little different to that for more traditional instruments improvisers”.
Besides that there are the vast possibilities offered by live coding, compared to acoustic instruments or fixed
graphical  user  interface  based  computer  instruments  (Blackwell  and Collins  2005,  6).  Theoretically  any
sound can be generated with the different synthesis techniques and audio effects, and the musical decisions
are only limited by the coder ability and creativity (and also the pressure due to time lags). 
Finally there is the projection issue. TOPLAP manifesto5 asks to “show your screens”, but projecting the
code to the audience is not unanimously seen as a good choice (McLean et al. 2010, 1). In our case the live
coder is part of an orchestra, so at first we decided not to project because we thought that it would bring
most of the attention to the live coder and his code. Our usual audience is more used to acoustic instruments
and as a result of this the projection would have a boosted shock factor (Collins 2011, 3) which could in turn
blur their attention to the group music and performance. But then we tried the projection at one of our
practice meetings, and it makes more sense to talk about that in the next section.

4. INTERACTION IN PRACTICE AND SOME OF OUR EXERCISES
The same way that the bass player and the drummer can jam without staring each other, should they be able
to jam with the live coder without reading his code? Does reading his future processes contribute to the
improvisation, or does it give too much information in advance?

4French word for courtesy, politeness, civility, which appears in Adorno's text two paragraphs before the
excerpt we cited.
5http://toplap.org/wiki/ManifestoDraft



We observed that in our group the complex relations established at the FI process are made of the physical,
corporal and emotional dimensions from the instrument gestures, and the musicians' attention fluctuates
between the sonorous and the visual.
We understand that the reunion of a live coder with musicians playing acoustic instruments offers a rich
context  for  the  creation  of  very  interesting  improvised  music,  being  up  to  everyone  to  understand
everyone's potentials and limitations. Regarding live coding, as put by Wilson et al. (2014, 1), “On the one
hand, it becomes possible to do many previously unimaginable things; on the other, it is often not possible
to do them very quickly”.
At first OE musicians did not seem to understand these lag issues regarding programming audio on-the-fly.
The tendency in our performances was to observe conversations between the acoustic instruments, while
the live coded sound remained as a background layer without much interaction, most times only influencing
and being influenced  by the orchestra  in  the  long term. An example  of  this  background layer  can be
observed from 00:58 up to 02:30 in the piece6 “Estados, eventos e transformações”, where the high-pitched
sounds from live coding were not influencing the acoustic musicians. However,  the same sound pattern
explored with a faster tempo drives at 02:35 the recovery from a sort of break and triggers a beautiful
movement from the piano player at 02:55.
One of the tools we use to articulate the flow is to explore moments of duos or trios, either in a spontaneous
fashion or previously settling the groups and when / how they should take place. For instance, we always
warm up for a session making a circle and practicing interactions in duos. Two musicians start jamming,
when appropriated the next one on the circle enters in the interaction and they improvise as a trio for a
while, then the one who was in the trio for most time leaves, the remaining duo improvise for a while, and
so it goes until everyone jammed. Each duo would typically last for about 2 to 3 minutes. Another problem
we observed was the extreme difficulty for the live coder to interact in these short moments of duos. This
difficulty can be  observed  in  the example  “Transição de duos – Set2014”,  where  duos transitions were
explored. Notice that good interactions happen up to 05:00, when starts the live coder and flautist turn and
they struggle to contribute and support each other. The only attempt to interact was based on imitating
attacks up to 06:16 (interesting musical output, though), when the live coder recedes in order to prepare
something for the wrap up of the exercise and the flute continues. Lack of time might be pointed as the
main obstacle here, forcing a tendency of using snippets or coding simple percussion or melody lines with
the basic waveforms. But it also seems to exist in almost everyone a kind of anxiety to make a remarkable
movement  in  the  current  turn,  and  we  think  that  within  this  scenario  the  discourses  are  unlikely  to
converge.       
Although we eventually made good performances7, it was clear to us that more information about the live
coding process and computer music techniques were lacking for OE members. Up to that point our coder
was using SuperCollider (mainly the Patterns library (Kuivila 2011) and some simple one-liners), so we
talked about some synthesis techniques, how long takes in average to code them as SynthDefs, what can be
done with the Patterns after the synthesis definition is coded, and how huge turnarounds in output can be
obtained with small  twists in code.  Finally,  we made our practice session projecting the code (half  the
orchestra have not seen live coding before), and they got a better idea about the live coder different way of
playing, like,  as beautifully put by McLean (2008), “In contrast to musical instruments directly plucked,
struck and bowed by a human performer, the movements of a live coded performance all happen inside a
computer. The live coder may be typing furiously, but it is the movement of control flow and data inside the
computer that creates the resonances, dissonances and structure of music”.
In the session “at MusicaNova 2014”, which we considered overall successful, a duo between the live coder
and the trombone player starts at 04:20. The first one struggles to make something interesting, and while
only a slow tempo rhythmic tone is his actual sound, the latter makes his best with a nice sewing around
the live coder poor sound, carrying the duo for a while. By the time the live coder finally fixes the code and
get what he was trying to, the trombone player is immediately influenced and a nice interaction and new
sonority are obtained by the duo, which then decides to continue exploring it until 07:20, when the bass

6All pieces that we use as example can be found at soundcloud.com/orquestraerrante
7The second half of the piece “Buscando chaves” is in our opinion an example of good interaction between
all  the  performers  (everyone  active  listening everyone's  musical  ideas  and  supporting  each other)  and
interesting musical result (contrasts, nuances, resolutions of tensioning, crescendos and diminuendos).



player comes in. Another interesting moment in this piece (from the live coding point of view) happens
from  25:40,  with  a  buzz  that  morphs  into  impulses,  which  increases  in  density  and  drives  a  nice
conversation between all instrumentalists. This is then followed by a sort of break with the coded clicks and
acoustic textures in piano. At 27:35 there is a huge drop in the coded sound where only a regular click is left,
and the musicians unanimously stop for a while and then come back for another  tutti, showing perfect
interaction in this long sequence of tension and release. Also in the performance “at MusicaNova 2014”,
there is a very intense tutti passage at 31:06 where the live coder does achieve interaction, influencing and
being influenced by the acoustic musicians' quick movements and textures transitions.

And now we come back to the questions posted in the beginning of this section, with another question. OE
members do not know programming, and even if they knew, how feasible would it be to simultaneously
perform their instruments, explore extended techniques, active listen to everything, and also read code?

We adapt the free improvisation presupposition and state that it is possible to interact only through sound,
given that everyone have and idea about everyone's instrument nature. People playing acoustic instruments
should know that in live coding (usually) there is not a direct relationship between typing and sound output,
and writing sentences (the live coder gesture) - takes time. With that, the acoustic musicians can support
the live coder lots of different ways while an algorithm is being written or bugs being fixed. Instrumentalists
should also keep in mind that  once the initial  algorithm is  written,  with little time and typing lots of
variations and musical intentions can be achieved and explored collaboratively.
However,  if the musicians (except the live coder) in the orchestra are able to read code and understand
where the live coder is sonorously going, interaction with the future is enabled and the musicians can also
experiment making room (or creating tension) for the coded sounds that are to come (the resolution). If only
one or a few of the members can read code they can still make this bridge to the future (and if their musical
movements are convincing they can lead the way in that bridge), but the pitfall in this case would be an
unconscious process of paying too much attention to this one aspect, “overlistening” to the other members,
ruining the lack of differentiation between the musicians in a free improvisation scenario.  Maybe (?) an
interesting scenario for an acoustic orchestra with a live coder would be if everyone could read code and
interact with the future, also being able to, preferably via sounds, warn the live coder about tortuous ways.
Of course not every free improvisation orchestra with acoustic instruments members might want to learn
programming and digital signal processing algorithms. But the same way that the live coder should know
something about his fellow musicians' possibilities and limitations, like a composer when choosing specific
instruments for writing pieces, it is extremely important that all orchestra members are at least exposed to
the process of live coding, so they can be aware of its specificities.

5. DEVIR (FOR LIVE CODER AND GHOST ORCHESTRA)
In this piece we wanted to explore the relations between the space where the improvisation happens, the
visual exchanges between the musicians, the interactions based on the immersion on the sounds and the
different possibilities of a musical discourse with a specific material.
As we observed and mentioned before, the sonorous is often blurred by the visual in collective musical
practices. We also discussed about the live coder's different types of gestures and peculiarities that the group
should take into account when interacting. So we wanted to artificially create a context in which everyone
is forced to interact with the live coder, actively listen to the live coded sound, and where the live coder
actually tries to suggest how the individual aspects of the resultant orchestra music will be imagined.
In Devir, the musicians are divided in duos which are placed acoustically and visually isolated. The live
coder and audience are placed in yet another room, where the code is projected for the audience and the live
coder controls a mixing board into which a mono signal from each duo and the stereo signal from the
computer  are  connected.  The  live  coded  audio  is  also  sent  to  one  musician  from  each  duo  through
headphones.
In the performance, the live coder controls the volume of each duo and the live coded sound in the final mix,
the one that is reproduced in the room with the programmer and audience. The live coder also controls the
volume of the computer sound that one musician from each duo will receive in the headphones. So the live



coder is faced with the challenge of coming up with a live coded sound that at the same time is interesting
for the final mix and suggests directions for one musician in each duo, which then interacts with the coded
sound, guiding the interaction within their partners within the duos.
In some moments the live coder might find it interesting to use only the computer sound in the final mix, or
use it in conjunction with only one duo (for instance to emulate a trio even when the full orchestra is
playing) or a few of the duos sounds (to artificially leave out of the performance a part of the orchestra for a
while).  Another  interesting  possibility  is  using  only  the  duos  sounds  in  the  final  mix,  individually
suggesting directions for each duo (voiding the volume of the headphones for all but one duo at a time).
Interestingly, in this piece, the live coder role is actually to live code both his algorithm, the entire orchestra,
and also the final mix and musical result of the session. Of course, depending on the technical structure of
the venue some variations for what was proposed can be tested, for instance isolating all the musicians and
individually communicating with them, or also to try a scenario with more than one live coder, perhaps
even one for each acoustic musician, and the live coders talk to themselves like a clan playing first-person
shooter video games8 (either shouting in the same room or with headphone sets over the network).
Aside from the complexity regarding the necessary hardware, we don't suggest projecting the code for the
duos because we want the musicians to know that the computer musician is live coding but we do not want
them to have to be able to read the code, as in a regular setup they wont have time for it, or many would not
even be able to, like we considered earlier. But occasionally, if conditions permits and some musicians can
read code, another variation would be to project the code to one musician in each duo and send audio over
headphones to the other one, creating another dimension within each duo. Another more extreme variation
would be to isolate everyone and send audio to half of them and projection to the other half, or even only
project the code to all isolated musicians and mix their individual sounds of interaction with the solfeged
code.

6. CONCLUSIONS
In this paper we considered the collision of two extreme musical practices in an acoustic orchestra context.
In free improvisation musicians' enunciations do not go through any kind of filter. This is an intentional
liberation from music traditions. The only limits regarding sonorities and musical conversations are the
performers' creativity and dexterity.
Above all the difficulty involved in finding a definition for live coding, there is an agreement that it “(...)
involves  the writing of  algorithms in real  time”  or,  concatenating another  two excerpts  by Magnusson
(2014), is a “method of composing through performance in real time”, involving “deep exploration of the
medium at hand”. It is striking how this last description is intimately related to broader definitions of free
improvisation (Falleiros 2012, 18). And we agree with Wilson et al. (2014, 1) when they say that “live coding
might be seen as an improvisational interface par excellence but lacks in agility”.
Given all the difficulties we went through and the differences between acoustic instruments and code as an
instrument,  we were  at  first  wondering if  live coding was  adequate  as  part  of  a  primarily  acoustic  FI
orchestra. We think it is, but important concepts must be worked by all the members to enable fluency in
conversations within the flow of a session. It is desirable that the acoustic musicians new to live coding
attend some performances  or watch good videos,  preferably accompanied by the orchestra coder.  They
should have an idea about the processes of writing, debugging, adapting and reusing code so they can tell
what is going on in interaction situations when improvising with the live coder.
We also considered the necessity of coding/DSP knowledge by the acoustic musicians. Of course that it
would enable them to come up with interesting anticipations while improvising, but we do not think it is a
need, and we should not forget that FI presupposes interaction based solely on the sound up to the current
moment.
Up to this point we still have not experimented with incorporating in the live coding possible rhythmic
information  that  might  arise  in  an  improvisation.  Although  rhythm  patterns  are  usually  avoided  or

8http://en.wikipedia.org/wiki/First-person_shooter



disguised in FI practices, it could be interesting to deal with rhythm synchronization issues between the
acoustic and computer sounds.
The possibility of interacting with the future would not be a stray from Bailey's (1990, 95) “playing without
memory” paradigm. But do we want them to read code? Agreeing with McLean and Wiggins (2010, 2) when
they  talk  about  the  code  written  by  live  coders,  “(...)  Their  code  is  not  their  work,  but  a  high  level
description of how to make their work”. In free improvisation there is a priority relationship with sound,
and not respecting that would be going too far from the free improvisation paradigm.
No, we do not want them to need to read code. And programs sometimes crash. But that is not a problem if
we have programmers playing acoustic instruments in Orquestra Errante. The interaction between all the
performers should be based on the sounds at the current instant allied with a benevolent attitude and an
openness to the future,  in an expectation projected through code  solfege,  not imprisoned by its abstract
interpretation, but derived from its sonorous concreteness.
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Embodiment of code
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ABSTRACT

e code we read on the screens of a livecoding performance is an expression of our compositional concepts. In this
paper I reflect on the practice of livecoding from the concept of embodiment as proposed by Varela, ompson, and
Rosch (1991): how we as coders embody the code, how machines can embody code, and how we inevitably need to deal
with the physicality of the machines and our own bodies that we use in our performances, and how we adapt both our
machines and bodies to enable our performances.

1. Introduction

is paper is an expansion of the author’s thoughts on the topic of embodiment in the context of livecoding, following
the invited talk at the Livecoding and the Body symposium in July 2014. As such it is a starting point for further research
and reflection on the practice of livecoding and the role of our bodies in it.

Varela, ompson, and Rosch (1991) defined embodied as follows (pages 172-173):

“By using the term embodied we mean to highlight two points: first that cognition depends upon the kinds
of experience that come from having a body with various sensorimotor capacities, and second, that these
individual sensorimotor capacities are themselves embedded in a more encompassing biological, psycho-
logical and cultural context.”

In the context of livecoding as a performance practice, this concept of embodiment surfaces in various ways - the physical
interaction of our body (sensorimotor interactions of typing, viewing what the screen shows us) with the machine (its
interface to receive input and giving output, but also the hardware architecture that defines the body on which code is
interpreted), as well as how the grammar and structure of a programming language shapes our thinking about concepts
and algorithms, and in turn the development of a programming language is determined both by the hardware on which
it will run, as by our desire to express certain concepts. Similarly, Hayles (2012) writes in her book “How we think” :

“Conceptualization is intimately tied in with implementation, design decisions oen have theoretical con-
sequences, algorithms embody reasoning, and navigation carries interpretive weight, so the humanities
scholar, graphic designer, and programmer work best when they are in continuous and respectful commu-
nication with one another.”

Where she suggests a close collaboration between humanities scholar, designer and programmer - within the livecoding
scene, many performers write (and share) their own tools, i.e. they are bridging the artistic and the technological within
their own practice, and actively contribute to the context within which they work; shaping their enviromenment at the
same time as they are navigating through it. is refers back to both the second part of the definition of embodied of
Varela, ompson, and Rosch (1991).

In this paper I will first reflect on how the properties of a programming language influences our thinking and expression
in code, then I will look at how our computers can embody different aspects of code, before discussing the physicality of
the machine and how our code not only has its intended effects on the output media, but also on the machine itself. In
the last section, I go into the interaction loop between the coder and the machine, and how we aempt to optimize this
interaction loop.

mailto:marije@nescivi.nl


2. Code embodied by the human

e practice of livecoding music has connections to both algorithmic music, and its expression in computer music, as
well as to what in dance is termed instant composition: (Collective 2015):

“INSTANT COMPOSITION combines the notion of working from the moment (INSTANTaneous creation)
with the intention to build something (COMPOSING a piece with an audience present). is means that for
us, improvisation principles are always concerned with both the question of FREEDOM and the question
of STRUCTURE.”

We express our concepts for musical structure in code - and as livecoders we do this at the moment of performance, rather
than completely in advance - we change the algorithm, while it is unfolding its structure. Where in improvisational dance
or improvised music, the structure of the composition is not apparent to the viewer or listener - in livecoding - when the
screen is projected for the audience to see - the improvised compositional structure is made apparent, although it may
be changed again by the livecoder before it is actually heard.

In our first encounters with a programming language as a coder, we try to adapt our minds to understand the language
and develop our own methods and ‘ways of doing things’ within the language. at is, we create our own subset of
the language that we use in our daily conversations. If we find we are dissatisfied with what we can express, we either
look for another existing programming language that fits our needs, or we write our own (extensions of a) language to
enable the expressions that we want. At the same time, the longer we spend programming in a particular language, the
more our mind gets auned to the language and shapes our thinking about concepts to express. Not only our mind gets
auned, also our body - as we type certain class names, our fingers can become auned to particular sequences of leers
that form words that have meaning in the code. As such code is an embodiment of our concepts (Varela, ompson, and
Rosch 1991), which develops itself in a dialogue between ourselves and the coding language.

(Rohrhuber, Hall, and De Campo 2011) argue that adaptations of a language (in their discussion the “systems within
systems” of SuperCollider) are “less like engineering tasks than works of literature, formal science, and conceptual and
performative art”, and they place this practice within a social context of sharing code and such adaptations with other
coders. us, code is not only the embodiment of concepts in our own mind, but they co-evolve with concepts of others,
which feed into new adaptations of code and programming languages, which may lead to new concepts to express, or
musical composition to be made.

On a social scale, in a comment made in a conversation at the SuperCollider Symposium in London in 2012, Sco
Wilson commented how he enjoys the community around the programming language, in that even though the com-
posers/musicians within the community have vastly different styles of music they create, they share a common mindset.
is may well be because either the programming language aracts people with a certain mindset, or using the program-
ming language pushes towards a certain way of thinking - or perhaps a combination of these.

3. Code embodied by the maine

In his description of the B1700 architecture, Wilner (1972) starts out describing how programmers using Von Neumann-
derived machines are forced ‘to lie on many procrustean beds’. He positions the motivation for the architecture of the
Burroughs computers against the rigidity of the Von Neumann-derived architecture. In contrast the Burroughs machines
are designed based on the requirements of the programming languages that should run on them, and the kinds of tasks
that these programs need to perform. is resulted in features of the hardware that even today are still unheard of, such
as variable bit-depth addressable memory and user-definable instructions in the instruction set of the B6000 machines
(Mayer 1982). While in their first machines, the architecture was designed specifically for the programming languages
ALGOL and COBOL, in the design for the B1700 they designed an architecture that would be able to adapt to a variety
of programming languages through the use of emulators that they called S-machines which could interpret application
programs. e hardware of the Burroughs machines was more complex than the contemporary machines of competitors,
but it embodied many routines that would otherwise have needed to be handled by soware routines (Mayer 1982). It
made for a very close relationship between the code wrien in a high level language and the resulting machine code,
considerably reducing the time to design and run these programs. Far ahead of their times, the Burroughs machines are
an outstanding example of the embodiment of code on the side of the machine.

For specific purposes, such as graphics calculations or digital signal processing (DSP), there are specialised computation
units that have been designed with these applications in mind: these DSP CPU’s have an architecture that allows them



to do the same mathematical operation on a vector of data points at the same time, thus speeding up computations on
large data sets.

At the other end, for the Von Neumann derived architectures, programming languages have been “stretched on pro-
crustean beds”, that is they have been optimized to run on the hardware architecture, favouring specific methods that
fit the architecture (e.g. byte-oriented coding, the development from 8-bit, to 16-bit, to 32-bit to 64-bit machines) over
ones that fit the application (e.g. working within the decimal system like one of the Burroughs machines (Mayer 1982)).
In those parts where code needs to be optimised to run fast on specific hardware, certain programming strategies are
preferred over others, and have shaped common practices of coding based on the hardware properties.

Most modern programming languages, and notably the programming languages used by livecoders, are further and
further away from the hardware level; given the fast processors and the generous memory space we have today, speed
and memory constraints are less of an issue in the design of programming languages, and the languages can be geared
more towards particular ways of expressing algorithms. e interpreter or compiler takes care of translating these into
machine code to run on the hardware, and in most cases the programmer in a high level language does not need to be
aware of the underlying hardware.

4. e physicality of the maine

Having built-in the possibility of extending the instruction set, the designers of Burroughs were at the same time aware
of security risks, so they built in a flag into the storage of data that would determine whether the word could change the
instruction set or not; only programs that were part of the operating system were allowed to make this change (Mayer
1982). Also with the Von Neumann-derived machines, the now common (modified) Harvard architecture (Wikipedia
2015), makes livecoding — seen from the machine’s point of view — impossible: we cannot change the program instruc-
tions at the very momemt they are running. We can just manipulate code that is compiled on-the-fly or interpreted into
a sequence of machine instructions that the machine knows. But once it is in the pipeline towards the CPU (or in its
cache), we cannot interfer anymore. We cannot change the machine, we can just change the commands that we put into
the cache. Only if we interfer with the hardware of the machine itself, we can make a change. In Jonathan Reus’ “iMac
Music”, this is exactly what he is doing, while the machine is executing soware, the performer hacks into the circuitry,
changing the pathways of the electronics and distorting the images and sounds created by the iMacs (Reus 2012).

Figure 1: Jonathan Reus performing “iMac music”, photo by Ed Jansen.



e instruction sets of computers consists very basic elements, methods of fetching data from memory, manipulating
these bytes of data (negation, bit shiing, etc) and combining of data (addition, subtraction, multiplication, etc). What
we call code is for the machine just data, through which we manipulate the memory map that determines how we move
through this data. e compiler or interpreter translates our data to machine instructions that will determine these
movements.

Griffiths (2010) with his project “BetaBlocker” created a virtual “8 bit processor with 256 bytes of memory” that can only
play music, with a small instruction set. In his perfomances the state of the machine is visualised, as you listen to the
sound that is created; in that “BetaBlocker” exposes the (virtual) machine completely, and the livecoding is happening
close to the physicality of the machine.

Figure 2: Dave Griffiths’ BetaBlocker (image from McLean et al. (2010)).

e data that flows within the computer can come from and go to different sources; the data is communicated to the CPU
through various buses. e processing of this data has both intended and unintended effects. If we write an algorithm
for sound synthesis, the data we process is intended to go to the audio card and be transformed into sound waves. But
at the same time when the CPU is very busy, it heats up, and safety mechanisms are in place to ensure that as soon as
a high temperature is measured, the fan within the computer turns itself on. Sometimes the effect can be both intended
and unintended, e.g. when accessing the harddisk (we intend to get data from the harddisk, but we do not necessarily
intend it to go spinning), or refreshing the screen (we want to see an updated text, but in order to do so we regularly
refresh the screen). Both of these things cause alternating electromagnetic fields around our computers, which we do
not necessarily intend.

Following Nicholas Collins’ circuit sniffing method (N. Collins 2006) using electromagnetic pickups to look for the sound
inside the machine, (Reus 2011) is transforming these sounds and manipulates them with code, and thus causing new
sounds to be created by the machine, in his work “Laptop Music”.

In both “iMac Music” and “Laptop Music”, Reus draws aention to the physicality of the machine, and how the code that
runs on it can be affected by hacking into the hardware, or how the code running on the machine affects what happens
inside the body of the machine. Both works remind us of the limits of the machine and the processes that happen inside
it - how the machine has a life of its own. For code to come to life — to express its meaning — it needs a body to do so.
Code needs to be embodied by a machine and its meaning cannot manifest without this machine.

5. e human body and the maine

When we livecode, we try to translate the concepts in our minds to code that runs on the computer, that will result in
some audible or visible or otherwise experienceable outcome. Let us look at this in detail (see also figure 3): in our mind



we formulate concepts into code words that will make up the program, we then send commands through our nervous
system to control our arms, hands and fingers to type in these words on the keyboard. e keyboard sends signals to
a bus, the CPU gets a notification of these signals, and sends them to our editor program, which displays the code on
the screen, and at the same time, puts the code words into the computers memory, so that given the right command, the
editor can send the code to the interpreter, which will translate the code into machine code that is processed by the CPU
to computer output data, which is then sent to output media, such as sound, light or visuals. Both the information from
the display screen of the computer (our view on the editor), and the result of the code as observed from the output media,
drive us to adjust our motor output (correct mistakes in our typing of the code, as we see it happen), as well as adapt our
concepts or come up with the next ones, as we see the output media going into a certain direction.

Figure 3: Schematic view of interaction of the human body interfacing with the body of the machine to translate our concepts
into code.

As we prepare for the act of livecoding, we try to optimize the qualities of the machine - both the physical and the
soware environments within which we code - to make this interaction loop go faster and smoother; we may choose a
specific keyboard and a screen, we choose our editors and how they display code, and we choose our output media. At
the same time we train our bodies to perform the motor skills to control the machine beer, such as learning how to
touch type, fast switching between mouse and keyboard, using keyboard shortcuts, and so on. We train the motor skills
needed for typing and correcting mistakes, so that they take less of our brain time to think about concepts (when I type,
I tend to feel when I make a mistake, sometimes even before I see the leers appear on the screen; before I consciously
realise I made a mistake, I already hit the backspace key to go back and correct the mistake). We have a need for speed,
we want to prevent the bodies of the human and the machine from obstructing the translation of concepts to code that
the machine understands. We do this by adapting our bodies; the physicality of the machine is important (the keyboard
layout, the feel of the keys, the feel of the mouse or touchpad), and we even embody part of the coding languages in our
body; if you always use sine oscillators (SinOsc) and never saw tooths (Saw), your fingers will almost automatically type
Si, before you can hold back and adjust to type Sa in the rare occasion that you want a different sound.

Similar to how we put the code into the computer’s memory, we keep in our own memory a representation of the code.
When I work on code, I usually have a map in mymind of the structure of the code - when an error occurs, I first visualise
internally where the origin of the error might be. I tend to object to the notion that SuperCollider (the object-oriented
language I usually work with) is unlike the visual programming environments (such as PureData and Max/MSP), because
its editor interface is text-based. In my mind, I navigate the code I work on as a visual map of interconnected objects.

In the performance “Code LiveCode Live” (Baalman 2009), I “livecode the manipulation of the sound of livecoding, causing
side effects, which are live coded to manipulate the sound of livecoding, causing side effects, …”. e concept of this livecoding
performance is to only use the sound of the typing on the keyboard of the laptop as the source material for the audio in
the performance. Furthermore, the sensing devices embedded in the laptop (e.g. accelerometers, touchpad, trackpoint,
camera, the keyboard) are made accessible and mapped (through livecoding) to the manipulation of the sound material.
Also the processes of the code itself (e.g. their memory and cpu usage) are used as sensors and used in the performance.



As such the performance of livecoding is influenced through its own side effects, transforming the code not only in the
logical, programmatical manner, but as an embodied interface of the machine on our lap.

On the SuperCollider list an interesting comment was made about this performance; a viewer had watched the online
documentation of the piece, and commented in a thread about the auto-completion features of the SuperCollider-Emacs
interface that it seemed rather slow. I had to write back that no auto-completion features of the editor were used in that
particular screencast. Apparently I succeeded in embodying the SuperCollider code to such an extend, that it seemed an
enhancement of the editor, rather than the training of my body.

6. Conclusion

In this paper, I have reflected on different aspects how embodiment takes placewithin the livecoding practice. I emphasize
on the aspects of the physicality of the act of livecoding - livecoding is not just the development of algorithms over time,
our bodies play an important role in the performance practice of livecoding; likewise, the physicality of the machine
plays an important role - its architecture determines in the end what the outcomes can be. We can only speculate what
livecoding would have looked like today, if the Burroughs machine architectures had been predominant since their first
invention — would we have had hardware that was designed to run SuperCollider so we would hardly need a compiler to
run the code? Can we imagine a different interface than the keyboard and the screen to input the code into the machine,
that will allow for a different way of embodying the code? What programming languages would evolve from such an
interface? What kind of conversations would we have?
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ABSTRACT
This paper reflects on the development process of two Live Coding languages, Blackwell’s  Palimpsest and
Aaron’s  Sonic Pi, from the perspective of practice-led arts and craft research. Although informed by prior
research in education, music, end-user programming and visual languages, these projects do not apply those
principles through conventional software engineering processes or HCI techniques. As is often the case with
practice-led research, the development process itself provides an opportunity for reflection on the nature of
software as a craft  –  both for live-coding researchers,  and for users of the live-coding systems that we
create. In reflecting, we relate our own practice to recent perspectives on software as material, and on the
role of craft as an element of interaction design research. The process that we have followed to support this
analysis could be applied by other developers wishing to engage in similar reflection.

1. INTRODUCTION
Creating a new live coding language seems like research, but what kind of research is it? In this paper, we
draw on our experience of creating two different live coding languages, in order to make the case that the
creation of a programming language can be considered as a type of practice-led research, and that the
practice of language creation is a craft practice (one that can be considered in contrast to either fine art or
conventional software product design). 
The process that we describe here, in one respect, describes the way that working programming language
designers have always worked. As with many practice-led academic fields, this is as we should expect – the
research should indeed be led by (i.e. it should follow) the practice. The distinct contribution made by the
academic in this context is to offer an analytic rigour and critical reflexivity that is more difficult to achieve
in  the  professional  environment  outside  the  academy  –  mainly  because  of  pressures  arising  from
commercial  questions of  business  models  and management,  along with lack of  opportunity for  explicit
conceptualisation  through  teaching.  However,  as  in  other  practice-led  areas  of  academic  work,  it  is
important  that  this  presentation  be  informed  by  our  own professional  practice  –  one  of  us  has  been
designing novel programming languages for over 30 years, and the other for over 15 years.
The first part of the paper presents a characterisation of the research process that we have been exploring.
The second part  evaluates  this  process  in  the  light  of  our  two practice-led  case  studies  of  live-coding
language design.  These  are  personal  accounts,  that  we  have  tried  to  present  in  a  reasonably  personal
manner, giving rich and reflective descriptions of our craft experiences.

2. CHARACTERISING PRACTICE-LED CRAFT RESEARCH
The characterisation of our research process starts from a perspective in programming language design that
is  informed  by  human-computer  interaction  (HCI)  research,  a  field  in  which  there  is  already  a  well-
established understanding of design practice as a component of the research process. We will broaden this
understanding, building on traditions of craft in design. However, in an academic context, this raises the
question of how rigour should be understood, both as personal discipline and for independent evaluation.
As noted by one reviewer of this paper, can practice-led craft research also exhibit scientific falsifiability, or
by another reviewer, will the findings be replicable? We argue that, rather than the criteria of falsifiability
and replicability applied in fields such as computer science, the key consideration in our research has been
to maintain a critical technical practice in which technical activity is embedded within a recognized and
acknowledged tradition, and subjected to rigorous reflection as argued in the rest of this section.



2.1. Research through Design

A programming language is both a user interface – between the programmer and the (virtual) machine –
and  also  a  mathematically-specified  engineering  system.  As  a  result,  programming  language  design
combines aspects  of  human-computer  interaction (HCI)  and software  engineering,  alongside theoretical
considerations from computer science.  We argue that the most appropriate way to integrate these very
different epistemological  perspectives  is  by considering the joint human-technical  experience as  a  craft
design practice. In doing so, we extend the concept of research-through-design, where the development of a
new (prototype) interactive product is regarded as an integral part of the research process (e.g. Fallman
2003, Gaver 2012). Although there are several different understandings of research-through-design in HCI,
we suggest that the integration of artistic and practical craft orientation in programming language design
can  be  understood  within  Fallman’s  “pragmatic  account”  of  design  as  “a  hermeneutic  process  of
interpretation and creation of meaning” (Fallman 2003). 
Although all design disciplines combine engineering with elements of art and craft, there is a tendency for
software design to  be considered only from the  conservative  perspective  of  engineering design,  which
chiefly aims to specify repeatable processes for design work. As a result, the design contribution of HCI can
easily  be  isolated  as  representing  a  particular  ideational  phase  within  an engineering process  (e.g.  the
sketching phase),  or a particular process  adjustment (e.g.  iteration after usability testing of prototypes).
Design  commentators  within  HCI  often  focus  on  sketching  and  iteration  as  characteristic  HCI  design
practices (Fallman 2003, Buxton 2007). This raises the question whether programming language design can
or  should  be  segregated  into  ideational  and  implementation  phases.  In  addition,  much  academic
programming  language  research  is  concerned  with  formal  and  mathematical  analysis  of  language
properties, with little consideration given either to the intended experience of the eventual programmer, or
(at first) the question of how the language will be implemented.

2.2. Craft as Research

As an alternative, we note that there has always been a tension between this type of perspective, and the
agenda  of  craft  design,  for  example  as  advocated  in  the  Bauhaus  manifesto  (Gropius  1919).  Although
considered unfashionable for many years, recent attention by scholars has returned to consideration of craft
as  a  valuable  perspective  on  contemporary  life  (Sennett  2008,  Frayling  2011).  Furthermore,  the  Crafts
Council of England is pursuing this agenda, not only as an advocacy body for traditional crafts, but also as a
potential contribution to contemporary industry and national wealth from professional trade skills, through
their manifesto Our Future is in the Making (2015).
When considered as an aspect of programming language development, a craft view of design suggests the
need to account for tacit or embodied knowledge of the skilled designer, rather than separating creative
sketching from predictable engineering processes. It has been argued that when professional designers use
digital tools, there is indeed an element of embodied knowledge that must be accommodated by the tool
(McCullough 1998, Ehn 1998). Indeed, Noble and Biddle used the Bauhaus manifesto as a starting point for
their  provocative  Notes  on  Postmodern  Programming  (2002),  and  research  into  programming in  an  arts
context confirms that such programmers are comfortable with descriptions of their work as craft (Woolford
et al 2010). 
There is a popular interest in more practice-based approaches to software development, using terms such as
‘software craftsmanship’, or ‘software carpentry’. A sophisticated analysis of software as craft, drawing on
McCullough  and  Sennett  among  others,  has  recently  been  published  by  Lindell  (2014).  However,  the
description of software as craft requires an analogy between the ways that knowledge becomes embodied in
the use of a physical tool, and the immaterial knowledge that is embedded in software development tools.
Physical craft tools have ‘evolved’ to fit the practiced hand through generations of use - in fact ‘co-evolved’,
because craft training proceeds alongside the reflective practices of making and adapting one's own tools. It
might therefore be expected that the craft of software would be partly ‘embodied’ in programming tools that
encode evolved expert practices such as prototyping, modelling and refactoring. 

2.3. Software as Material

In  craft  traditions  where  there  is  believed  to  be  significant  embodied  knowledge,  creative  artists  and
designers often advocate  “letting the material take the lead”  (e.g. Michalik 2011), working directly with
materials and traditional  tools  in order to discover  design outcomes through that embodied interaction



process. Programming language developers are indeed committed to their tools  –  in the case of our two
projects, we find that craft traditions are embodied in our professional tools in ways that allow the craft
designer  to  carry  out  technically  competent  work  without  conscious  critical  intervention  that  might
otherwise be an obstacle to innovation. For Alan, this tool-embodied knowledge was obtained through the
IntelliJ IDEA environment for Java development, and for Sam, Emacs and Ruby, both of which have evolved
through  reflective  expert  usage  to  support  agile  development  practices,  that  also  become  an  academic
resource within a design research context.
The second point of comparison for this software-as-material analogy is that the professional designer is
often described as having a  “conversation with the material”  (Schön 1983,  Schön & Wiggins 1992),  in
which design concepts are refined by observing the development of a work in progress. A standard account
from design ideation research relates this conversation specifically to sketches, arguing that sketches are
intentionally  produced  in  a  manner  that  allows  ambiguous  readings  (Goldschmidt  1999),  so  that  the
designer may perceive new arrangements of elements that would not be recognized in verbal descriptions or
internal mental imagery (Chambers & Reisberg 1985). The understanding of software as material initially
appears counter-intuitive, because of the fact that software is of course immaterial. However, we can draw
on  the  understanding  of  materiality  in  interaction  (Gross  et  al  2013)  to  observe  that  code  is  often  a
recalcitrant medium, offering resistance to manipulation by the programmer, in the same manner as the
media materials of artistic practice.

2.4. Rigour in Practice-led Research

To some extent, these craft practices might simply resemble undisciplined programming – hacking, in the
old terminology – as opposed to professional business software development processes of the kind that are
prescribed in many textbooks (and indeed, taught to undergraduates by the first author). It is true that these
projects, as with much academic software development, were carried out using methods that differ from
professional commercial practice. However, as with academic research, there are also essential elements of
rigour that are a prerequisite of success. 
Within art and design disciplines, academic regulation has led to more precise statements of the criteria by
which practice-led research should be evaluated (Rust 2007). The research process involves the creation of
novel work, motivated and informed by prior theory, resulting in a product that is analysed in terms of that
theory. This process is consciously reflexive – the object of analysis is not only a novel artefact (in the case
studies below, our two novel programming systems), but also the process by which it was created (in this
project,  iterative  development  combined  with  rehearsal,  performance,  collaboration  and  creative
exploration).  This  is  significant  because  of  the  insistence  in  design  research  on  interpretive  and  craft
traditions – “designerly ways of knowing” (Cross 2001) – rather than treating research products purely as
experimental  apparatus  for  the  purpose  of  testing  hypotheses  about  human  performance  or  market
potential.  Similarly,  evaluation proceeds by reflection on precedent and process,  rather than assessment
(either by an audience or by potential users). The recalcitrance of the code “material” supports the same
opportunities for intellectual discovery that are described by Pickering (1995) as the “mangle of practice” in
which  new  kinds  of  scientific  knowledge  arise.  This  experience  of  discovery  through  the  “material”
resistance of code is identified by Lindell (2014) as an intuition shared by many programmers.
In summary, the process that we explore in this research responds to the requirements of programming
language design by working in a way that greatly resembles the professional  practice of  programming
language designers themselves. However, the standards of rigour to which it subscribes have been adopted
from practice-led art, craft and design research, rather than conventional programming language design, in
a manner that is consistent with characterisations of code as material, and of craft and materiality as a
recent research orientation in HCI.

2.5. Toward a Critical Technical Practice

Following  this  lead,  we  propose  four  elements  for  craft-based  research  during  live  coding  language
development:  i)  understanding of  the design canon  –  a body of  exemplars  that  are recognised  by our
community of practice as having classic status; ii) critical insight derived from theoretical analysis and from
engagement  with  audiences  and  critics  via  performance,  experimentation,  and  field  work;  iii)  diligent
exploration via “material” practice in the craft of programming language implementation; and iv) reflective
critical  assessment  of  how  this  new  work  should  be  interpreted  in  relation  to  those  prior  elements.



Although these are discussed here as separate methodological  elements, they were not divided into the
ordered sequence of analysis, synthesis and evaluation that is characterised by Fallman (2003) as underlying
the conservative account of the design process,  but were integrated within a reflective craft practice as
already  discussed.  In  the  broader  computer  science  context,  they  suggest  the  opportunity  for  a  truly
practice-led approach to critical technical practice (Agre 1997), in which our standards of rigour are derived
from those of practice, rather than the conventional scientific criteria of falsifiability and replicability.

2.6. Introduction to the case studies

In the remainder of this paper, we explore the potential of this research approach through two case studies
of live coding language development. The two languages considered in these case studies are  Palimpsest
(developed by the first author, Alan) and  Sonic Pi (developed by the second author, Sam). Palimpsest is a
purely-visual  language  that  supports  interactive  manipulation  and  collaging  through  constraint
relationships between layers of  an image (Blackwell  2014).  Sonic Pi  is  a  Ruby-based  music  live coding
language that has been developed with support from the Raspberry Pi Foundation, to encourage creative
educational experiences through programming (Aaron and Blackwell 2013, Burnard et al 2014). Sonic Pi has
been widely deployed, on a range of platforms, and has a large user base. Sam performs regularly as a live
coder using Sonic Pi, both as a solo artist and in a variety of ensembles. Palimpsest has not been released,
but  has  been  evaluated  in  a  number  of  experimental  studies  with  artists  in  different  genres,  and  has
occasionally been used in performance by Alan. Sam and Alan have performed together as audio-visual duo
The Humming Wires, using Sonic Pi and Palimpsest on separate machines with networked interaction.

3. CASE STUDY 1: PALIMPSEST
The Palimpsest project emerged from an extended period of collaboration with professional artists who use
digital media within conventional artistic genres (e.g. deLahunta 2004, Ferran 2006, Gernand et al 2011),
studying their working practices, and creating new programming languages and programmable tools for
them to use. It was also motivated by intuitions that new programming paradigms could exploit novel visual
metaphors to widen audience (Blackwell 1996). In the context of design research, Alan’s intention was to
use his experience of collaboration with artists as a way to “jump away from” the conventional practices of
software engineering, and understand alternative dimensions of the programming language design space
(Gaver 2012). 

3.1. Element i) Identifying design exemplars

The identification of creative experiences as a)  desirable for  computer users,  and b) lacking in existing
programmable systems, has been a starting point for major programming language innovations in the past,
including Sutherland’s Sketchpad (Sutherland 1963/2003) and Kay’s Dynabook (Kay 1972) and Smalltalk user
interface (Kay 1996) that inaugurated the Xerox Alto GUI (Blackwell 2006). Those visual environments were
conceived as offering an alternative to computer programming, but in both cases had the significant side
effect  that  they  transformed  the  mainstream  engineering  paradigms  of  interacting  with  computers.
Although programming continues to be regarded as primarily an engineering pursuit, there is no a priori
reason to exclude programming from the domain of ludic interaction – computing for fun (Gaver 2002).
A second motivation  for  Palimpsest  was  to  create  a  system in which the  distinction  between abstract
notation and directly  manipulated content was less strictly enforced.  The spreadsheet,  originating from
Visicalc, is an example of a programmable system in which the user can directly view and manipulate the
content of interest (columns of numbers), while also expressing constraints for automated processing of that
content (spreadsheet  formulae) and more complex data representations or algorithms (macros).  Each of
these can be regarded as notational  “layers”  beneath the surface of the cell  array  –  the formulae  and
constraint relationships are normally invisible, but can be imagined as always present underneath the grid.
Macros and database connections are not part of the grid at all, but a “back-end” service that is behind both
the surface data and the formula layer.
This analytic metaphor of abstract notations being layered over or under other representations had been
developed through previous experiments implemented by students (Blackwell & Wallach 2002), and was a
critical insight motivating the Palimpsest project. In media and cultural studies, the word palimpsest has
been extended from its original meaning of a text written over an erased original, to refer to the layered
meanings that result when different cultural or historical readings replace each other or are superimposed



(Dillon 2007). The palimpsest thus offered a fertile metaphor for the integration of computation into the
visual domain, as a way of exploring relationships between direct manipulation and abstraction layers. This
conception  of  expressing  computation  purely  as  relations  between  visual  layers  also  revives  the  long-
standing challenge of  the  “purely visual”  language,  of  which Smith's  Pygmalion (Smith 1977),  Furnas's
BitPict (1991), and Citrin's VIPR (1994) have been inspiring examples. 

3.2. Element ii) Critical orientation

These  earlier  investigations  into  programmable  systems  for  creative  applications  had  resulted  in  an
engaging surface of direct manipulation that was more clearly associated with users’ intentions (diagrams
and cartoon line graphics in the case of Sketchpad, published pages of novels, music or artwork in the case
of the Dynabook/Alto). But these early GUIs were not simply approximate simulations of pencils, drawing
boards or musical instruments – they offered a more abstract layer of interpretation that was derived from
programming  language  concepts,  including  collections,  inheritance,  data  types  and  constraints.  Such
systems present computational  expressivity via an abstract  notation,  while  also allowing users  to have
direct access to representations of their work products. However many recent systems are no longer layered
in this way. If the computation is not modifiable by the user, then we have a WYSIWYG system that offers
direct manipulation but little abstraction (sometimes described as “What You See Is All You Get”). This was
a motivating factor for Palimpsest, that had developed from the developer’s theoretical and experimental
investigations of abstraction as a key property of programming that is distinct from the user experience of
direct manipulation (Blackwell 2002).
The  separation  between  abstract  notation  and  concrete  manipulation  has  long  been  identified  as  an
educational challenge, not only in teaching programming, but for mathematics education more generally.
The “turtle” of Papert’s LOGO language was motivated by Piagetian theories of educational transition from
concrete  to  abstract  thinking (Papert  1980).  More  recently,  many  systems  to  teach  programming  have
integrated  concrete  manipulation  of  content  into  programming  environments  –  this  strategy  is  made
explicit in systems such as AgentSheets (Repenning & Sumner 1995), Alice (Conway et al 2000) and Scratch
(Resnick et al 2009), all of which provide direct manipulation assistance when interacting with the syntax of
the abstract  notation,  while  offering separate  access  to  media  content  via preview windows  and some
combination of content creation and browsing tools. The objective in Palimpsest was to explore whether
directly manipulated graphical content and abstract behavior specification could be integrated into the same
(layered) visual surface. 
Finally, this research was informed by critical attention to programming as a distinctive user experience
(Blackwell & Fincher 2010). An emergent theme from previous research with practicing artists has been to
explore intermediate ground between the different user experiences that are characteristic of sketching and
of programming. When compared to computer programs, sketches have different notational conventions
(Blackwell,  Church et  al  2008)  and design functions (Eckert,  Blackwell  et  al  2012).  Sketching implies  a
different kind of  intrinsic user  experience (casual,  exploratory,  playful),  but  also different extrinsic user
motivations  (less  concerned  with  detail,  working quickly,  open  to  unexpected  outcomes).  The intrinsic
benefits of using digital tools are also likely to be driven by the importance of psychological flow in creative
experience, rather than by task efficiency (Nash & Blackwell 2012), a factor that is directly relevant to live
coding.

3.3. Element iii) Exploratory implementation

The implementation element of this project, situated within an experimental design research context, was
not intended to take any of the above discussion as fixed requirements to be satisfied by a resulting product.
Rather,  these analytic perspectives  provided initial  starting points  for  exploration.  Furthermore,  serious
consideration was given to the historical fact that the systems chosen as design exemplars often turned out
to benefit users other than those who had inspired their development (successors to Smalltalk had benefits
beyond children, successors to Visicalc had benefits beyond accountancy). For this reason, although the
development process drew on understanding of different user experiences in order to emphasise sketch-like
exploration, it was not assumed that this would result in a product meeting the needs of any specific user
group. The objective was rather to support a full range of computational expressivity, in a manner that was
accessible to a diverse user base, rather than meet an immediate end-user goal.



Preparatory  work  with  professional  artists  had  provided  initial  insight  into  alternative  styles  of  user
experience, and alternative approaches to computation, drawing on sketching practices. However, it also
informed the development process,  since the creative potential  of following the  “material”  of software
resembled an artistic process more than an engineering one. It is not necessary that a software development
process emulate the work habits of the potential users. Nevertheless, adopting an artistic process offered a
counter to the conventional approach to programming language design, which often results in products that
meet the requirements of programming language designers (consider the respect given to languages that
can be used to write their own compilers – a requirement that reflects a very small user base indeed, and
distracts from the need to empathise with users who are unlike the designer).
The key  consideration  in  the  exploratory  implementation  process  was  to  defer  as  far  as  possible  any
decisions regarding the eventual system functionality.  Although preparatory collaborations and analytic
concerns informed the general approach to be taken, the only starting point was the intention to create a
“layer language”.  The first  day of the project  therefore started by Alan implementing a visual  “layer”,
without yet knowing what this would imply. Over time, he conceived the relationship between these layers
as a stack of superimposed treatments, then as a tree of regions that might be treated differently, then a
separation  between  the  stack  and  these  regions,  then  a  strict  separation  between  content  and  control
regions, then the introduction of a control region that provided a window onto content imported from
another layer, and so on.

3.4. Element iv) Reflective assessment

A reflective diary recorded the more dramatic changes in design intention as they occurred, although these
became less frequent over time. However large-scale changes in the system architecture continued to occur
throughout  the  10  month  development  period.  Changes  of  this  kind  relied  heavily  on  the  refactoring
capabilities of the development tools used – an example of the “craft” affordances that are now embodied in
professional tools – in this case, IntelliJ Idea.
Some of these changes were prompted by early demonstrations to groups of researchers,  or trials  with
prospective  users.  However,  the  great  majority  of  the design changes were in  response  to  Alan’s  own
experience of using the prototype while it was under development, working in an intentionally isolated
environment (a house in the forest, located in the Waitakere mountain range on the North West coast of
New Zealand). During the most intensive development period, he used the prototype for approximately an
hour  each  day.  The intention  in  doing  so  was  to  provide  a  constant  comparison  between  the  “craft”
experience of developing the Palimpsest prototypes in the recalcitrant material of the Java language, and the
more exploratory sketch experiences that were intended for users of Palimpsest itself. When combined with
his own previous research into end-user programming (drawing on approximately 30 years of experience),
and previous experience of arts collaboration process research (extending over 10 years), this immersive
practice was intended to promote reflective design, and theory development that emerged from a personal
creative practice. 
Rigorous  reflection  on  work  in  progress  need  not  be  conducted  in  the  manner  of  an  engineering
investigation – indeed, Alan feels that his most valuable findings were creative insights that occurred after
periods of  relatively unconscious reflection (while jetlagged,  or  on waking from sleep (Wieth,  & Zacks
2011)). These findings were seldom attributable to a process of hypothesis formation and testing. Although
he found it valuable to compare his own experiences with those of other users, observing a single user
session generally provided sufficient external stimulus to inform a month of further development work.

4. CASE STUDY 2: SONIC PI
The development of  Sonic Pi  has  followed three  distinct  phases,  each oriented toward  a different  user
population.  The first  of  these was  the  development  of  a  tool  that  would  support  school  programming
lessons, with music used as a motivating example. In this phase, collaboration with teacher Carrie-Anne
Philbin shaped the requirements and application of the interface (Burnard, Aaron & Blackwell 2014). The
second phase was the project Defining Pi, funded by the Arts Council of England, and in collaboration with
Wysing  Arts  Centre  and  arts  policy  consultant  Rachel  Drury.  In  this  phase,  several  artists  were
commissioned to make new work that extended Sonic Pi in ways that might be accessible to young makers
(Blackwell,  Aaron & Drury 2014).  The third phase,  named  Sonic Pi Live and Coding,  was funded by the
Digital  R&D for  the  Arts  scheme,  led  by  performing  arts  venue  Cambridge  Junction,  and  working in



collaboration with education researcher Pam Burnard as well as a large number of other individuals and
organisations. In this phase, the focus was on support for the school music curriculum rather than simply
programming, and included a summer school for 60 participants (Burnard, Florack et al 2014)

4.1. Element i) Identifying design exemplars

Sonic Pi was created for educational use, but with the intention that it should be a live-coding language
from the outset. As a result, it inherited influences from Overtone, a system that Sam had co-designed with
Jeff  Rose.  Sonic  Pi  draws  heavily  from  Overtone’s  system  architecture  and  there  are  many  direct
correlations from a system design perspective. For example, both systems sit on top of the SuperCollider
synthesiser server and both are built to enable concurrent interaction with the server from multiple threads.
Overtone itself was influenced directly from Sorensen’s Impromptu (and later Extempore) with ideas about
pitch representation essentially migrating from Impromptu to Sonic Pi via Overtone. McLean’s  Tidal was
also  an  influence  purely  in  terms  of  its  operational  semantics  and  expressivity  over  pattern.  Finally,
Magnusson’s  ixi  lang was  a  large  influence  with  respect  to  its  simple  uncluttered  syntax  and  tight
relationship between visible syntax and sound.
In the education domain there are three systems that were influential as design exemplars for Sonic Pi. First
is  LOGO - which demonstrated how an extremely simple system both syntactically and semantically can
allow  children  to  create  sophisticated  output.  It  also  was  a  system  that  used  creativity  as  a  tool  for
engagement - a philosophy Sonic Pi strongly associates with. Second is Scratch - a graphical language which
allows users to nest ‘pluggable’ pieces of syntax to represent semantics. This nested approach to syntactic
structure is followed closely by Sonic Pi. Finally,  Shoes by Why the Lucky Stiff demonstrated how Ruby’s
syntax is flexible enough to represent sophisticated concepts in a simple and readable manner.

4.2. Element ii) Critical orientation

The two primary goals for Sonic Pi were that it should be easy to teach to 10 year olds, and that it should be
possible to perform with. The teaching focus was not solely a question of motivation and learnability, but to
support the classroom practice of Carrie-Anne Philbin, the teacher with whom the initial curriculum was
developed. This meant removing as much as possible anything that related only to the tool, rather than her
teaching  goals.  Understanding  these  considerations  involved  direct  observation  of  children  using  the
language (and its various iterations), experience in classrooms, and many conversations with teachers and
education experts. Imagining a teacher explaining an approach to a 10 year old in the classroom means
asking how each idea or abstraction works with other similar abstractions. This idea of similarity seems to
be very important, and must be combined with a very simple starting point. Any new feature or idea needs
to  not  ‘pollute’  this  initial  starting  experience.  Simple  things  should  remain  simple  (syntactically  and
semantically)  whilst  sophisticated  things  may  be  complex  provided  that  complexity  fits  the  abstract
constraint reflection properties previously described.
With regard to performance, a key priority was that it should be possible to anticipate what the musical
output would be, in a way that is not always true with other live coding languages. Sam’s previous work
with Overtone had resulted in a tool for building instruments, whereas Sonic Pi was intended to  be an
instrument. This new emphasis arose in part through the practical advantages of performing as a solo artist
– Sam’s band Meta-eX was structured as a duo, with an instrumentalist playing controllers whose sounds
and behaviours were customized using Overtone. The change to a solo environment meant that the huge
flexibility that had been designed into Overtone became more constrained in Sonic Pi, with many technical
choices defined in advance. These include the use of stereo buses throughout, a fixed set of synthesisers, and
effects that can only be combined in linear stereo chains. Many of these features offer a more simplified
conceptual model to young performers. For example, every synth has a finite duration, notes are expressed
in MIDI (although fractions are allowed for microtonal effects), synth and FX lifecycle are fully automated
(similar to garbage collection in modern languages), and logical thread-local clocks allow time to be easily
manipulated in an explicit manner enabling the construction of further timing semantics (Aaron et al 2014).

4.3. Element iii) Exploratory implementation

The earlier development of Overtone had been strongly embedded within the characteristic software craft
perspective of  exploratory development in the Lisp/Scheme language family – here the Clojure dialect.
Sam’s tools were the familiar customizable Emacs environment, with his personal set of extensions having



become popular among other live coders – the Emacs Live system. However, the concern with performance
as a craft-practice of its own has led the implementation work in an interesting direction.
Sonic Pi  isn't  just  about  teaching computing skills  in isolation.  It uses music as a tool  for framing the
computational ideas and to engage the learner. A core goal has therefore been to demonstrate that the music
part isn't simply ‘bolted on’ to enhance the experience,  but that the learner sees Sonic Pi as a credible
performance tool. The motivation should be "I want to be able to make music that is interesting!" In order to
ensure  that  Sonic  Pi  enables  interesting  performance,  Sam  has  had  to  become  a  dedicated  Sonic  Pi
performer himself. Since Oct 2014 he has used only Sonic Pi for his live coding performances, rehearsal and
personal practice/preparation.
This introduces the challenge of separating his development work (coding new ideas) from practice with
using Sonic Pi as a musical instrument. Sam’s experience is that these are very distinct coding activities.
Given that his background and comfort zone was in traditional software development rather than music
performance, it was very easy to interrupt any practice session with a coding session. This would therefore
interrupt the performance flow often for the remaining duration of the practice period. In order to ensure
that this did not happen, his development practices have acquired the following disciplines:

 Allocate distinct times for each activity. Typically, this would involve development coding in the
daytime and performance practice in the evening.

 Performance practice was done solely on the Raspberry Pi computer. This was initially in order to
ensure that performance was optimized for the Raspberry Pi,  so that Sam could present it as a
serious instrument (avoiding "hey kids,  use the Raspberry Pi for  live coding, however I  use an
expensive Mac"). 

 Meanwhile,  the low budget architecture of the original Raspberry Pi meant it was conveniently
impractical  to continue coding on the same machine.  It  couldn’t  smoothly run Emacs with the
‘Emacs Live’ extensions developed for Overtone, and an Emacs session running concurrently with
the Sonic Pi environment would cause CPU contention disrupting the audio synthesis.

 Practice time was also differentiated by being offline – indeed, Sam would remove all laptops and
phones from the room whilst practicing, so that he didn’t have an idea, start googling it, and before
he realised it would be back coding on his Mac again.

4.4. Element iv) Reflective assessment

The strict separation between performance and development meant that Sam would have lots of neat ideas
in the live-coding moment which were promptly forgotten. He therefore started keeping a paper diary in
which he throws notes down as quickly as possible when he has an idea, then continues practicing. The
diary-like note taking has subsequently  become a central  aspect  of  ongoing Sonic Pi  development and
formed the backbone of a reflective discipline. Often during a practice session Sam will be in a musical
position and have an idea of  where  he'd  like to go,  but  run into syntactic  or  semantic  barriers  in the
language that prevent him getting there easily. Or, he'll find himself writing boilerplate code again and again
and therefore start imagining a nicer way of automating the repeated task. Ideas that would spring into his
head he'd just jot down. 
Occasionally, when there is no obvious solution to a problem, he might allow himself to interrupt a practice
session (if the opportunity has sufficient merit) and then spend a bit  of time imagining he has already
implemented the solution, so that he can see if he could sketch the solution to the idea in Sonic Pi. This
sketching activity does not seem like development work, but has far more the character of reflective craft –
design ideation that must be captured in the performance moment. Sam describes this as ‘a feeling that my
mind had been tuned specifically for the context of performance and so I'd be able to consider solutions in
that light’.  If he came up with a decent solution, he could then jot this down in his notes and continue
performing. In actuality, implementing things during practice sessions has become rarer and rarer. Instead,
Sam accumulates a list of ideas (sometimes the list would be short, other times incredibly long) and the
following day he reads through the list to potentially motivate aspects of that day's development. Often
ideas don’t make much sense the next day, and can just be ignored. 
The following evening’s practice session starts with a fresh page - if the same problem arises during two
consecutive practice sessions, or even repeatedly, annoyance becomes a key motivator for working on a



solution.  However,  both  the  software  and  Sam’s  experiences  are  constantly  changing,  offering  new
perspectives. As a result, it is occasionally useful to work through all his previous notes in a single sitting,
‘mining for nice ideas’.
These private practices are supplemented by ensemble collaboration. As mentioned earlier, Sam and Alan
perform together occasionally as  The Humming Wires. Rehearsals for those performances often result in
exchange of design principles that result from tension between two very different execution paradigms: the
underlying constraint resolution architecture of Palimpsest, and the data flow graph and event structure of
Supercollider. Sam finds similar creative tension in other collaborative performance contexts, for example in
his new band Poly Core, in which he improvises live with a guitarist, finding that when they discuss new
ideas, it is valuable to code them in the rehearsal moment. Some can be achieved fluently, whereas others
are not so simple - frictions that potentially become new entries on the list of coding tasks.

5. CONCLUSIONS
In this paper, we have described our experiences of programming language development from the personal
perspective  of  live  coding  practitioners.  We do  not  think  that  these  experiences  are  unique  –  on  the
contrary, we expect that many of the observations made in the above case studies will be very familiar, or at
least will resonate with others who create live coding languages. However, we also believe that these kinds
of experience will appear familiar to all programming language developers, whether or not they consider
themselves ‘live coders’ as such. We think it may be very interesting to explore analogies between the
performance  /  rehearsal  /  development  distinction  in  live  coding  work,  and  the  transitions  between
implementation and experiential perspectives in other programming languages.
Despite the formal and abstract presentation of many programming language design textbooks, we believe
that most programming language designers  are motivated  by a need  to change the user  experience  of
programming – usually based from introspection on their own experience, or perhaps (if academics) from
observation of conceptual problems faced by their students. Unfortunately, as a result, many programming
languages are designed only from the perspective of people who are already programmers, and without
opportunities for the kinds of creative tension and reflection in practice that we have described in this
paper. Research in end-user programming has attempted to address this deficiency through the application
and  adaptation  of  user-centered  HCI  research  methods  for  the  programming  domain  –  including
development of user models, techniques for analytic evaluation and critique, and a mix of contextual and
controlled user study methods. 
These projects  have explored an alternative approach,  influenced by the methods of practice-led design
research.  They  have  been  derived  from the  availability  of  a  new generation  of  “craft”  tools  for  agile
software development, including Emacs, Git, IntelliJ, Ruby – and enabling design concepts to emerge from
the  actual  construction  of  a  prototype  language.  Many  aspects  of  these  designs,  including  significant
conceptual foundations, develop through reflection on the experience of building and using the system. The
research outcomes can be attributed in part to insight and serendipity, in a manner that while probably
recognizable  to  many  research  scientists,  is  not  normally  specified  either  in  prescriptions  of  scientific
method, or of user-centred software development methodology.
These projects have stepped away from “requirements capture”, back to the traditions of craft professions
in which tools are made and adapted by those who actually use them. They intentionally blur the boundary
of software development and creative exploration, and avoid many conventional practices in each field. We
hope that the results might be of value, by highlighting the systematic and rigorous alternatives that can be
taken to the craft of programming language design.
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ABSTRACT
The purpose of this paper is to present the self-built electroacoustic musical instruments of Hugh Davies
(1943-2005)  to  the  international  live  coding  community,  and  to  propose  points  of  similarity  between
Davies’s practice and present-day live coding practice. In the first part of the paper,  the context within
which Davies’s  instrument-building practice developed,  in  the late 1960s,  is  outlined,  and a number of
specific instruments are described. Aspects of Davies’s performance style,  repertoire,  and the ensembles
with which he performed are discussed, as are activities such as instrument-building workshops and public
exhibitions of instruments, in which he regularly participated. In the second part of the paper, four areas of
connection with present-day live coding practice are suggested. Respectively, these focus upon live coding’s
status: (1) as part of a long historic tradition of live electronic music performance (as opposed to electronic
music constructed in the studio); (2) as a practice in which the performer him or herself builds the apparatus
(whether  physical  or  code-based)  through which the music  is  mediated;  (3)  as  an improvised  or  semi-
improvised art-form in which music is developed in real time, within a framework bounded by material or
quasi-material  constraints;  and  (4)  as  a  community  of  practice  with  a  distinct  agenda  of  promoting
understanding through engagement.  This paper  is  presented  as  a  case  study in exploring live  coding’s
historic precedents, and as a contribution toward situating live coding within a broader historical, cultural
context.

1. INTRODUCTION
Hugh Davies (1943-2005) was a musician, historical  musicologist,  and instrument-builder,  professionally
active  from  1964  up  until  his  death  in  2005.  As  well  as  making  significant  contributions  to  the
documentation of electroacoustic music’s history (Mooney 2015a), throughout his career Davies built more
than 120 musical instruments and sound sculptures that ‘incorporate[d] found objects and cast-off materials’
(Roberts 2001) such as kitchen utensils, plastic bottles, springs, hacksaw blades, and many other materials
that might normally be considered ‘junk.’
The reader is encouraged to watch the following video, in which Davies plays and briefly talks about one of
his  self-built  instruments:  https://www.youtube.com/watch?v=wPT9A0IsGgs (Klapper  1991).  Specifically,
Davies plays the first of his self-built solo performance instruments, which is a device called the Shozyg.
(Towards the end of the video he also plays a number of others.) The Shozyg was built in 1968, and consists
of a collection of fretsaw blades, a ball-bearing, and a spring, the sounds of which are amplified via two
contact microphones that feed a stereo output. These objects are mounted inside the cover of a book that
has had its pages removed; this is an encyclopaedia volume that covers the alphabetic range of topics from
SHO to ZYG, which is where the instrument gets its name from. The Shozyg is electroacoustic because the
means  of  initial  sound  production  are  acoustic,  but  the  vibrations—which  would  be  too  tiny  to  hear
otherwise—are amplified electronically. The Shozyg was designed to be played with the fingers or with the
aid of accessories such as ‘needle files, small screwdrivers, matchsticks, combs, small electric motors, small
brushes, coins, keys, etc.’ (Davies 1968a). (In the video Davies appeared to be using a screwdriver.) A second
model of the Shozyg was built later the same year, comprising a different set of amplified objects;  both
models of the Shozyg are shown in Figure 1, below.
Keith Potter—a close colleague of Davies’s for many years at Goldsmiths, University of London—made the
following comments in an obituary that he wrote in the Independent newspaper:
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[I]n the 21st century, it seems that Hugh Davies’s innovatory, do-it-yourself, lo-fi approach—which in several
respects  prefigured  present  laptop  culture—is  finding  favour  with  a  younger  generation  to  whom  this
remarkable  and iconoclastic  innovator  now appears  as  a  significant  father  figure.  (Potter  2005,  emphasis
added)

Potter does not specify precisely how Davies’s approach prefigured present laptop culture, nor indeed which
specific laptop culture it prefigured; but Potter’s comments suggest that there might be some connections
between Davies’s instrument-building practice, which began in the late 1960s, and present-day live coding
practice. The purpose of this paper, then, is to begin to explore what some of those connections might be.
The author  has  previously  suggested  some speculative  points  of  contact  between  Davies’s  instrument-
building  practice  and  live  coding,  based  upon  three  recurring  themes  in  Davies’s  work:  materiality,
economy,  and community (Mooney 2015b).  In the current  paper,  two of  these themes (materiality  and
community) are developed further; the third theme (economy) has for the time being been dropped, in order
to allow for a greater focus upon the aspects that are most directly relevant to the field of live coding,
though it is still considered relevant and will be further explored in the future.

Figure 1. Shozyg I (above); Shozyg II (below). Photo © Pam Davies. Courtesy of The British Library.

2. BACKGROUND AND CONTEXT
In  1964,  at  the  age  of  21,  Davies  became  personal  assistant  to  the  avant-garde  composer  Karlheinz
Stockhausen.  Davies lived for 2 years in Cologne,  where,  amongst other things,  he became involved in



performances of Stockhausen’s latest work,  Mikrophonie I (1964).  Mikrophonie I is a piece in which two
performers excite the surface of a large tam-tam gong, using a range of different objects such as drinking
glasses, cardboard tubes, hand-held battery-operated fans, and kitchen implements (Davies 1968b). A further
two performers amplify the sounds produced by the tam-tam using hand-held microphones, so that details
of  the sound that  would  otherwise  be inaudible can be  heard.  Two final  performers  affect  the  further
transformation of the amplified sounds using electronic filters, as well as controlling the volume; thus, there
are six performers in total.
With  respect  to  Davies’s  nascent  instrument-building  practice,  three  things  are  significant  about
Mikrophonie I. First, it involved the repurposing—which is to say, ‘hacking’—of every-day objects as musical
instruments. Second, it involved the electronic amplification of acoustic sounds that would otherwise be too
quiet to hear. Third, and above all, it was a work of ‘live electronic’ music, that is, it involved the use of
electronic equipment to manipulate sound in a live performance context, as opposed to producing electronic
music on magnetic tape in the studio. From the end of World War II up until at least the beginning of the
1960s,  experimental work in electronic music was overwhelmingly dominated by magnetic tape (Davies
2001,  p.98);  sounds  recorded  and  transformed  in  the  studio  using  tape  manipulation  techniques  were
painstakingly assembled into compositions by cutting the tape up with a razor blade and sticking it back
together with splicing tape.  A finished composition could easily take months to realise.  The practice of
producing electronic music in real time, to a reasonable approximation, did not exist, and did not start to
become  common  until  the  1960s;  and  Stockhausen’s  Mikrophonie  I was  among  the  earliest  pieces  to
systematically explore this new area. 
The three characteristics just highlighted—live electronic music, amplification, and the hacking of every-day
objects—went on to become defining characteristics of Davies’s instrument-building practice, and Davies
himself acknowledged the influence of his experience as Stockhausen’s assistant in catalysing this aspect of
his work (Davies 1997, p.12). Another influential early work of live electronic music, however, was John
Cage’s  Cartridge  Music (1960),  in  which  the  otherwise  inaudible  sounds  of  various  found  objects  are
amplified by inserting them into the apertures of gramophone cartridges.

Figure 2. Some of Davies’s early instruments. Photos © Pam Davies. Courtesy of The British Library.

3. EARLY INSTRUMENTS (1967-8)
On returning to England, Davies found that he no longer had access to the sophisticated equipment that had
been available during his time as Stockhausen’s assistant, and could not afford to buy any such equipment
of his own (Davies 1979, p.1). Hence, the very earliest of Davies’s self-built instruments—dating from 1967—
represent Davies’s efforts to imitate some of the techniques he had encountered in  Mikrophonie  I using



found or cheaply available objects, including combs, broken light-bulbs, and springs stretched across the
opening of a metal tin (see Figure 2). The sounds of these objects were amplified via contact microphones.
These early instruments were originally developed as ways of generating sound material for tape-music
compositions (Davies 1997, p.12), but Davies soon recognised the potential for using such contraptions in a
live performance context, and began to build instruments specifically with live performance in mind.

4. FIRST LIVE PERFORMANCE INSTRUMENTS (1968-72)
As mentioned previously,  the first  of  Davies’s  performance instruments  was the Shozyg,  of  which two
different models were produced; these comprised a prefabricated selection of objects mounted inside the
cover of a book, and a range of implements or accessories that could be selected to activate those fixed
components  of  the  instrument  in  performance.  Beginning  in  1970,  Davies  built  a  dozen  so-called
Springboards (Mk. III is shown in Figure 3), in which ‘a number of springs (from two upwards) are mounted
on a wooden board, and treated rather like strings’ (Davies 1997, p.12). The springs were amplified, usually
using magnetic pickups. Another one of Davies’s instruments was the Concert Aeolian Harp (shown in
Figure 4), first built in 1972, which consisted of a collection of ‘thin fretsaw blades […] mounted in a holder
[…] [which were] blown on by the human breath as well as played with a variety of miniature implements
such as a feather and a single hair from a violin bow’ (Davies 1997, p.13). 

Figure 3. Davies with Springboard Mk. III. Photo © Michael Dunn. Courtesy of The British Library.

Davies combined several of his self-built instruments in a compound instrument that he referred to as his
Solo  Performance  Table  (a.k.a.  Multiple  Shozyg,  1969-72).  The  Solo  Performance  Table  (see  Figure  4)
incorporated versions of  the three instruments  mentioned previously—the Shozyg (Mk.  II),  Springboard
(Mk.  V),  and Aeolian  Harp—as  well  as  an  amplified  3D photograph,  ‘whose  grooves  [were]  played  by
running fingernails  across  them at  different  speeds’,  two unstretched  springs  amplified  via  a  magnetic
pickup, a metal egg-slicer amplified via a further magnetic pickup on top of which it is sitting, two long
springs ‘with keyrings by which to vary their tension’, again amplified via the aforementioned pickups, and



a guitar string amplified by being mounted inside a turntable cartridge (recalling Cage’s  Cartridge Music),
‘whose tension is varied by [a] bamboo holder’, and which is either plucked or bowed (Davies 1974). In all of
these  self-built  instruments  Davies’s  tendency to  repurpose,  modify,  or  hack  ready-made or  every-day
objects  can clearly be seen. A custom-built  multi-channel mixer was used to mix the various amplified
sounds together in real time during performance.

Figure 4. Solo Performance Table, incorporating: (a) Shozyg Mk. II (1968) with a range of playing implements;
(b) Springboard Mk. V (1970); (c) Concert Aeolian Harp (1972); (d) 3D postcard; (e) two unstretched springs and
magnetic pickup; (f) Egg-slicer and magnetic pickup; (g) Long springs with key-rings to vary their tension; (h)

Guitar string mounted in gramophone cartridge, with bamboo tensioner and bow; (i) Diaphragms used in
conjunction with egg-slicer, plus further springs; (j) Custom-built multi-channel mixer. Photo © Pam Davies.

Courtesy of The British Library.

5. PERFORMANCE CONTEXT AND CHARACTERISTICS
Davies’s self-built instruments were typically played in improvised, semi-improvised, and/or process-driven
contexts.  In  the  late  1960s  and  early  70s,  Davies  played  his  instruments  in  three  different  performing
ensembles: Music Improvisation Company (1969-71), Naked Software (1971-3), and Gentle Fire (1968-75).
Music  Improvisation  Company  and  Naked  Software  were  both  improvisation  ensembles,  the  former
somewhat  jazz  oriented,  the  latter  less  idiomatically-driven.  (Even  the  name Naked  Software  suggests
possible  connections  with  computing.)  Gentle  Fire,  on  the  other  hand,  specialised  in  performing
compositions rather than improvisations  per se, but  favoured indeterminate scores that left a significant
degree of interpretative freedom to the performers, or works that developed according to some kind of (as it
were)  ‘algorithmic’  process.  These included works by Stockhausen,  Cage,  Brown, Grosskopf,  Wolff, and
others,  as  well  as  several  of  Gentle  Fire’s  own  Group Compositions,  which were process  pieces  devised
collectively by the members of the group (Davies 2001a; Emmerson 1991). 

(a)
(b)

(c)

(d)

(e)(f)
(g)

(h)

(i)

(j
)



Gentle Fire’s  Group Composition V involved the rolling of dice to determine musical events and electronic
processes, and various other physical and conceptual systems designed to constrain the action possibilities
within an otherwise open musical framework. In  Group Composition IV, it was the instrument itself that
governed the process by which the music unfolded over time. This was an instrument built, not just by
Davies, but by all five members of the group, comprising four large, suspended metal racks amplified via
contact microphones, which all of the members of the group played simultaneously. ‘The instrument is the
score of what we’re playing’, is how one member of the ensemble described Group Composition IV (Michael
Robinson, quoted in Plaistow 1973). It was the instrument itself that governed the actions of the performers,
and hence the way the music unfolded  over  time;  the instrument provided,  as it  were,  the ‘algorithm’
driving the music’s development, via an exploration of its affordances and constraints. Process in Davies
and Gentle Fire’s work is discussed further elsewhere (Mooney forthcoming/2012a, 2012b).
From the early 1970s onwards Davies began to perform more as a soloist, and less frequently in ensembles,
but  his  solo  performances  retained  the  improvised,  semi-improvised,  or  process-driven  approach  just
described. Although the sound-world and overall structure of a performance might sometimes be planned in
advance,  it  would  never  be  entirely  predetermined.  Rather,  Davies’s  performance  practice  was  one  of
continual exploration of the musical possibilities of the instrument(s) at hand: 

What [Davies] requires of anyone who plays his instruments is that he or she should become sensitive to
what the instrument is capable of doing and what is natural to it… (Roberts 1977, p.8)

When he talks about his work it is noticeable that Davies constantly uses phrases like “the instrument tells me
what to do”, [or] “the materials show me how it should be.” (Roberts 1977, p.11)

One might suppose  that it  was these kinds of  principles that were continuously at  work when Davies
selected objects and playing techniques from his Solo Performance Table. One gets the impression of an
exploratory  framework,  circumscribed  by  the  instrumentarium’s  material  properties  and  constraints,
through  which  the  music  was  allowed  to  develop  as  an  emergent  form  via  a  continuous  process  of
interaction between performer and instrument. 

6. WORKSHOPS AND EXHIBITIONS
Davies’s instrument-building practice was not undertaken solipsistically,  nor purely for his own artistic
gratification. On the contrary, Davies actively sought opportunities to engage a wider public, both in the
playing  of  his  existing  instruments,  and  in  the  invention  of  new  ones.  Davies’s  frequently  staged
instrument-building workshops for children (Davies 2002, p.96), for example, as well as regularly exhibiting
his instruments in art galleries,  where members of the public would be encouraged to play them. Such
activities were underpinned by a commitment to ‘learning by doing’, an ethos symbolised by the very first
of his performance instruments, the Shozyg, which was described in the BBC’s The Listener magazine as ‘an
encyclopaedia degutted to substitute direct experience for learning’ (quoted in Davies 1974, p.5).

7. DAVIES’S PRACTICE AND LIVE CODING: FOUR SUGGESTIONS
For the purposes of the present discussion live coding is defined as the manipulation of computer code in a
live performance to generate or influence the development of music in real time. (Live coding is, of course,
practiced  in  other,  non-musical,  scenarios,  but  these  are not  directly  considered  here.)  How might  the
present-day practice of live coding be related to Davies’s instrument-building practice as I’ve just outlined?
As a starting point for further discussion, four suggestions are offered.

7.1 Live Electronic Music: Historic Precedents

First and foremost, both Davies’s practice and the practice of live coding are forms of live electronic music,
that is, they both represent attempts to generate music by electronic means in the context of a real time
performance, as opposed to producing electronic music off-stage in an electronic music studio. This might
seem like stating the obvious, but in this case stating the obvious is an important thing to do, since it allows
Davies’s  practice and live coding to be thought  of as constituent parts of a broader historic trajectory.
Within such a framework, one might look for precedent aspects of live coding practice, not just in Davies’s
work, but in other previous incarnations of live electronic music, such as those documented by Davies in his
extensive article on ‘Electronic Musical Instruments’, published in the New Grove Dictionary of Music and
Musicians in  2001  (Davies  2001b).  For  example,  Davies  refers  to  the  use  of  ‘miniaturized  circuitry  and



microcomputers’ in the work of David Behrman, Paul de Marinis, Larry Wendt, and the California-based
League of Automatic Composers (Davies 2001b, p.101), the latter of whom used KIM-1 microcomputers in
live performances:

With a debut performance in Berkeley in 1978, the League’s performances consisted of each human member’s
KIM-1 networked together through flimsy, 8-bit parallel ports through which each device could be used to
generate its own sound as well as receive and process data from other machines on the “network.” (Salter
2010, p.206)

Whether or not these computers were actually coded during real-time performance, the simple fact of their
use in a live performance setting at all represents a part of the historic precedent for today’s live coding
practices that is worthy of further exploration. As another possible precedent,  David Tudor’s  Rainforest
pieces (1968-73), which involved the use of ‘instrumental loudspeakers’ made of aluminium, steel, wood,
and  glass  as  ‘signal  processors’  in  various  different  permutations,  might  be  thought  of  as  a  physical
predecessor  of  MaxMSP,  where  multiple  signal  processing  modules  connected  to  one  and other  in  an
infinitely permutable combinatorial system. Might Davies’s Solo Performance Table, comprising multiple
self-contained instruments encapsulated within a single overall framework, be likened to a collection of
object instances within an object-oriented programming framework? These examples do not share all of the
features of present-day live coding practice, of course, but they do show how certain characteristic aspects—
such as the use of computers in live performance, or the presence of an infinitely permutable signal-routing
system—were present in forms of live electronic music that predated live coding per se.

7.2 Building, Making, Modifying

Second, in Davies’s practice, as in live coding, it is the performer him or herself that builds (and/or modifies)
the structures through which the music is mediated. Davies built his own instruments, which were then
used in performance; live coders develop the algorithmic structures by which the music is mediated in real
time, as the performance proceeds. On the surface of it, the idea that Davies’s instruments were built before
the performance, whereas in live coding the building takes place during the performance might appear to
point  to  a  fundamental  distinction  between  Davies’s  practice  and  live  coding;  but  does  that  apparent
distinction really stand up to close scrutiny? 
To quote Thor Magnusson in the documentary  Show Us Your Screens, ‘this requirement of starting from a
clean slate [in live coding] is always an illusion’ (Magnusson, quoted in McCallum and Smith, 9’44”). In live
coding, there is always a part of the programming infrastructure that pre-exists the performance, whether
it’s  the programming language itself,  a higher level abstraction such as a graphical  user interface,  or a
portfolio of functions or algorithms written in advance; whatever coding is done on-stage is simply an
addendum to, or modification of, those pre-existing materials. This fact, of course, challenges the notion that
live  coding  is  concerned  only  with  building  code  during  the  performance.  Conversely,  with  Davies’s
instruments, it is true that parts of the instrument are built in advance of the performance, in that there is a
collection of pre-existing materials that Davies brings on to the stage with him, but the ways in which those
materials are combined and interacted with remains open-ended, and changes reactively as the performance
proceeds, as appropriate to the musical development and the performance context. The choice of different
accessories when playing the Shozyg, or the different combinations and interactions with the constituent
objects  of  the  Solo  Performance  Table,  are  examples  of  this.  The use  of  screwdrivers  and  other  such
improvised addenda might even be thought of as modifications to or augmentations of the instrument itself,
somewhat reminiscent of the way pre-existing code structures are modified, permutated or augmented in
live coding. In other words, Davies’s performance practice includes live manipulation and selection of the
materials that constitute the instrument, just as much as it involves assembling those materials in advance. 
In both Davies’s  practice and in live coding,  then, there are materials that  are built  in advance of  the
performance, and modifications, selections, and augmentations of those pre-existing materials that are made
in real time, as the performance proceeds. (A further sense in which Davies’s practice and live coding might
be thought of as similar is that they both involve the appropriation and modification of ready-made objects:
every-day objects and household items in Davies’s instruments; external function libraries and pre-written
functions in live coding.)



7.3 Improvisation Bounded by Material (or Quasi-Material) Constraints

Third, both Davies’s practice and live coding involve improvised, semi-improvised, and process-driven—that
is, algorithmic—aspects. In live coding it is perhaps self-evident that there are algorithmic processes at work,
since algorithmic processes are fundamental to all coding scenarios. Live coding also can involve an element
of improvisation, though; to quote live coder Dan Stowell:

For me it’s about improvisation… How can you get towards a position where you can really improvise with
the full potential of computer music, on stage? (Stowell, quoted in McCallum and Smith, 1’44”) 

Davies’s practice, similarly, includes both improvised and ‘algorithmically-driven’ elements; it developed, as
discussed previously, in improvisation ensembles, but also in groups that specialised in the performance of
process-driven  works.  In  some cases,  as  in  Gentle  Fire’s  Group  Composition  IV,  the  process  itself  was
explicitly circumscribed by the material constraints of the instrument itself;  a situation which might be
likened  to  the  way a  live  coder’s  actions are  ultimately  constrained  by the  characteristic  or  ‘material’
properties of the chosen programming environment.
Whether or not computer code can be considered ‘material’ is worth a brief diversionary discussion in the
current context. According to Magnusson, code might be considered ‘material’ in the sense that ‘it is a direct
and non-ambiguous prescription of the computer’s electronic gates’ (Magnusson 2014, p.1); it is, in other
words, material by proxy. Interactions with code, then, are in a sense material interactions by proxy. This is
perhaps  most clearly foregrounded in the many software packages  whose graphical  user  interfaces use
physical metaphors, such as MaxMSP, where the user connects patch-cords to objects. There are, of course,
not really any patch-cords in the physical material sense, but the interaction is a material one functionally
and metaphorically speaking, and a truly material one in the sense that it has a corresponding deterministic
influence  upon  the  computer’s  electronic  gates.  In  this  sense  the  live  coder,  operating  within  a  given
software environment, is bounded by the ‘material’ constraints of that environment. 
However, irrespective of whether code can truly be thought of as material, Davies’s practice and live coding
are similar insofar as the music develops in real time, in an improvised or semi-improvised way, and within
an overarching framework that is bounded by the constraints—material or quasi-material—of the chosen
instrumentarium or programming environment. 

7.4 Community Engagement and Interactive Learning

Fourth, in Davies’s practice and in live coding, there is a clear desire to promote understanding through
participation, which manifests itself in a distinct demonstrative, or perhaps even ‘pedagogical’ aspect, and in
community or  group-based  activities  with  an  emphasis  on  hands-on  engagement.  For  example,  Davies
frequently staged instrument-building workshops for children, and exhibited his instruments in art galleries
where members of the public were encouraged to play them. In live coding, a community-driven aspect is
evident in the many open source software frameworks that are used and contributed to by live coders, or
indeed  developed  specifically  for  live  coding.  Hands-on  engagement  is  also  evidenced  in  the  many
‘Hackspaces’ and ‘maker’ events in which live coders sometimes participate (e.g. Leeds HackSpace 2015;
Maker Faire UK 2015). All of these kinds of activities have strong agendas of learning and making, or, rather,
learning by making. 
One specific practice that both Davies and live coding have in common is the practice of ‘screen sharing.’ In
live coded performances, it is common practice to video-project the computer screen, so that members of
the audience can see how the code being typed relates to changes in the music (Sorensen and Brown 2007).
To quote from TOPLAP’s draft manifesto…

Obscurantism is dangerous. Show us your screens. (TOPLAP 2011)

(Show Us Your Screens  is,  of course,  the title of the documentary that has  been cited twice previously.)
Similarly Davies, in live performances, used to video-project images of his hands while playing his self-built
instruments, ‘enabling the audience to make a clearer connection between what they see and what they
hear’ (Davies 1997, p.13). In both Davies’s practice and in live coding the video-projection is undertaken in
order to facilitate audience engagement, and a better understanding of the processes by which the music
unfolds.



8. CONCLUSION
The  preceding  discussion  has  focussed  upon  articulating  areas  of  similarity  between  Hugh  Davies’s
instrument-building and performance practice, which developed in the late 1960s and early 70s, and the
present-day practice of live coding. In summary, it has been noted that both are forms of live electronic
music in which the performer him or herself takes responsibility for defining the structures through which
the music materialises. Both are performance practices in which the music develops in an improvised or
semi-improvised  way,  as  an  iterative  and  reciprocal  interaction  between  a  performer  and  a  given
framework, where certain elements are fixed before the performance, and certain elements are selected,
manipulated, and/or modified as the performance proceeds, but where the range of possible interactions is
ultimately  bounded  by  certain  material  or  software-based  quasi-material  constraints.  Finally,  both  are
associated  with  hands-on,  community-based  activities  that  are  designed  to  facilitate  engagement  and
understanding through participation. 
‘Live coding is a new direction in electronic music and video’, claims the TOPLAP website (TOPLAP 2011).
Of course, there is a sense in which live coding is a new and exciting field, but there is clearly also further
work to be done in situating live coding in its broader historical, cultural context. By drawing a comparison
with Davies’s work, it has been demonstrated that non-trivial similarities with live coding can be found in a
performance practice that predated live coding as we currently know it, and involved neither computers nor
computer programming per se. It is hoped that this paper might stimulate further thought, discussion and
research as to how such an agenda might be usefully extended in future.
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ABSTRACT

Performing real-time, live coded graphics requires a streamlined programming environment, efficient implementation
techniques, improvisatory inventiveness, a tuned ear, and above all, aesthetic sensibility. e performer must not only
pull together these concepts, but maintain an awareness and forethought, of the graphical results of and performance
expectations of the live coding environment.

1. Introduction

Live coding is a unique and extend-able area of computer-based research and artistic practice, as evidenced by the wide
variety of integrated development environments (IDEs) that currently exist for live coding.¹²³

is text includes observations, thoughts, and discoveries the author has made over the past year of developing and
performing with his own live coding IDE.⁴ Specifically, this text addresses the challenges the live-coding graphic artist
faces when collaborating with an audio performer on a set piece, including primarily the necessity for for an efficient
and accurate coding environment. e IDE, which runs in Google Chrome, uses the OpenGL fragment shader language,
features autocompilation and execution, has a customizable autocompletion engine, real-time FFT analysis and Open
Sound Control (OSC) connectivity, and supports multi-output projection-mapping. Code writing and editing occurs in
a text editor layer on top of the computed visual output.

While the autocompilation and autocompletion features contribute to the performer’s speed and flexibility in a live
situation, one must be aware of code artifacts, lines or blocks inadvertently uncommented or simply unintended, must
be taken into account. While introducing the potentials for interesting discoveries, these artifacts may also produce
undesirable effects, and by understanding these fallibilities to the degree that their implementation, expected or not, can
be successfully integrated, the live coder expands his or her aesthetic toolbox beyond what is already known.

2. Language Has

eOpenGL shader language (GLSL), which executes directly on the graphics hardware, not sandboxed by another envi-
ronment, is syntactically strict. Below are several low-level techniques that have become integral my performance prac-
tice; techniques that have improved aesthetic flexibility and coding speed, while satisfying the aforementioned syntactical
requirements. ese descriptions are specific to GLSL, but their concepts are applicable to other IDEs and languages.

2.1. Safety First

It is common practice to initialize a value at variable declaration, not only to prime each variable for instantaneous
implementation, but to eliminate the potential for bugs and unexpected results. In the code sample below the value of
color1 is unknown, whereas the value of color2 is black. In its current, undefined instantiation, adding red to color1,
would likely return an unknown, potentially jarring result depending on the context. Color2, which is initialized to be
black, can more accurately predict the result of adding red: black becomes increasingly red.

¹“Live Coding.” 2015. http://en.wikipedia.org/wiki/Live_coding
²“Soware.” 2015. http://toplap.org/category/software/
³“ToplapSystems.” 2015. http://toplap.org/wiki/ToplapSystems
⁴Link to IDE e_Force: http://shawnlawson.github.io/The_Force/ Link to github repository: https://github.com/shawnlawson/The_Force
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//vec4(red, green, blue, alpha) with 0.0 - 1.0 range.

vec4 color1;

vec4 color2 = vec4(0.0, 0.0, 0.0, 1.0);

color1 = color1 + vec4(1.0, 0.0, 0.0, 1.0);

color2 = color2 + vec4(1.0, 0.0, 0.0, 1.0);

// unknown output color

gl_FragColor = color1;

// output color will be black plus red

gl_FragColor = color2;

Furthermore, if the a performer decides to delete the line of code that adds red to color2, the outgoing fragment color
would revert back to the initialized value of black, thereby reducing the potential for rogue values to modify the color if
that line is implemented in some other process(es). Similarly, if the performer deletes the line of code that adds red to
color1, the resultant value is unknown, and may lead to an undesirable, or at least unexpected outgoing fragment color.

2.2. Commenting

A simple method of working within the functionalities of an auto-compiling and executing IDE is to write code behind
a single line comment maker (see example below).

//line of code written, ready to be uncommented

//vec4 color1 = vec4(1.0, 1.0, 1.0, 1.0);

It has proven, effective to implement a key command into the IDE to toggle comment/uncomment on the current line(s).
e potential pitfall of this functionality is that if the code behind the comment marker has errors, they won’t be apparent
until aer the uncommenting (which will be addressed in the next subsection), but as a process for hiding/revealing code
from/to the compiler quickly, it is generally effective. Specific to GLSL, if lines or blocks of code are not directly needed
then commenting out portions of code can have large performance improvements, specifically regarding frame rate and
rendering resolution, but also legibility.

As in most programming environments, comments can be used to organize and structure. An IDE with a color syntax
highlighter on a static background color will substantially reduce the performer’s visual search for specific code locations.
When the code lengthens to the degree that it scrolls off the screen, a higher level of search can be implemented using
single line comments. In the comment below, the performer can do a quick visual scan of the reverse indented, color-
coded comments, then narrow the search to the specific code desired, as opposed to the performer hunting through the
syntax-colored code on what may be a similarly-colored, animated background. In the code example the comment color
is light blue whereas in the IDE it is grey, causing it to stand out more, not dissimilar to a wrien text’s section headings
that may be in bold and larger font. e offset and color difference simply makes the comment easy to find and mentally
parse.

vec4 color1 = vec4(1.0, 1.0, 1.0, 1.0);

vec4 color2 = vec4(0.0, 0.0, 0.0, 1.0);

//H Bars

color1 = color1 * step(.4, fract(gl_FragCoord.x * .1));

color2 = color2 * step(.6, fract(gl_FragCoord.x * .2));

2.3. Conditional Help

As previously mentioned, there are potential issues with the single line commenting method. Below is a workaround to
those potential pitfalls that subtly exploit the auto-compiler.

vec4 color1 = vec4(0.0, 0.0, 0.0, 1.0);



if (false) {

color1 = color1 + vec4(1.0, 0.0, 0.0, 1.0);

}

Using a conditional statement that always evaluates false allows the embedded code to be auto-compiled, but prevents it
from executing. is encapsulation within a conditional statement provides the performer with a safety net for building
complex or detailed code sections without worry for inadvertent or premature compilation. When successfully compiled,
the performer can utilize the comment method to hide this code from the compiler, and safely remove the conditional
wrapper (this is expanded in the snippets section).

2.4. Decimal Cheats

During a performance, the performer may want to create a transition or continuously change a value. Slowly increasing
a value from 0.1 to 0.9 is quite easy; whereas, changing from 0.9 to 1.0 is not. To change the leading 0 to 1 would result
in an intermediate value of 1.9 before being able to change the 9 to 0. A similar problem exists in the reverse direction.
To change the trailing 9 to 0 would result in an intermediate value of 0.0 before being able to change the leading 0 to 1.
Both 1.9 and 0.0 are quite far out of sequence from our value of 0.9.

e cheat is to intentionally commit an error, then rely on the autocompiler’s memory. When an error occurs, the
autocompiler retains the most recent successfully compiled shader. e performer simply inserts a second decimal point,
in this example, next to the existing decimal, resulting in 0..9. Changing numbers on either side of the decimal can now
happen without consequence. Once we have our desired value of 1..0, the extra decimal point is removed resulting in a
final value of 1.0, which the autocompiler will accept (an additional method towards continuous change is addressed in
the external input section).

3. Linguistics

vec4 white = vec4(1.0, 1.0, 1.0, 1.0);

//each line below has one error

vec4 color1 = whie;

vec4 color2 = vec4(1.0, 1.0, 1.0 1.0);

It is much easier to see the leer “t” missing from the word “white” in the declaration of color1, than to find the comma
missing aer the third parameter in color2. When performing, typing and text scanning are virtually simultaneous, and
without considerable legibility error resolution becomes increasingly difficult. Anxiety and stress mounts when while
tracking down errors, because a set performance piece continues; gradually, one falls behind and misses cues.

Debugging color2, under some time pressure, we would mentally check type (vec4); the operation (=); the parameters
(count of 4 matches vec4), values (1.0 1.0 1.0 1.0), type (float float float float), separated (yes yes no yes) - finally we have
the problem. And, it is a very detail oriented problem, which is not an ideal situation.

In the case of color1, we would mentally check type (vec4); the operation (=); the value (whie) - spelled incorrectly. We’re
more easily able to locate the spelling mistake than to dig down into the niy-griy.

To conclude this sub-section, one is less error-prone when using “white” than “vec4(1.0, 1.0, 1.0, 1.0)”, so long as “white”
is correctly defined. Plus readability and comprehension are much faster. Predefining commonly utilized variables like
colors and functions, as we will discuss in the next subsection, is one way to achieve this.

3.1. Helper Functions

e development and utilization of helper functions aid with the overall performance and help to maintain a graphical
pacing and aesthetic interest. In the case of GLSL, a random function does not exist in many Graphics Processing Unit
(GPU) hardware implementations. To write a random function for the performance may certainly have some appeal if
it were integral to the primary concept of the performance; however, when needed solely to have some random data to
work with, the writing out of helper functions can consume valuable time. A resolution to the issue was to include a
select set of oen used helper functions into the IDE for random numbers, shapes, and sprite sheet animation.



4. Debugging

While the integration of a step through debuggermay be an interesting aspect of one’s performance, should the debugging
process drag-on too long, the flow of the visual experiencemay be compromised. In order to avoid a protracted debugging
session, a graceful, scale-able debugger can be an excellent addition. One method of subtle error indication is to make a
slight change to the line’s background color (see Figure 1).

Figure 1: Example of a debugger highlighting a line of code that has an error. Note, the missing comma again.

Should more assistance or information about the error be needed to resolve the issue, a slightly more intrusive technique
can be used. In figure 2, error markers are placed in the line number column. Additionally, when the cursor hovers
over one of these markers a debug message is displayed. ere is some efficiency lost with this method; because, the
performer must pause typing, move the cursor, read, move the cursor to hide the message, and finally start to type again.

Figure 2: Le: Example of an error marker. Right: Revealed debug message.

An even more visually intrusive method would be an in-line debug message information system (see Figure 3). While
this example is visually disruptive, especially when it shis down lines of code when inserted, it is significantly faster
for the performer to see the debugging information and make a correction.

Figure 3: Example of a debugger providing additional information, in-line to the code. Note, again, the missing comma.

All of these approaches detract less from the overall show experience by avoiding a separate panel with a GDB style
breakpoint debugger. And, as with most things, with experience and practice, these assistive debugging indicators can
be scaled back as the performer gains confidence and proficiency.

5. Autocompletion and Snippets

Many autocompletion engines exist in many forms, but it is important that they are configure-able for one’s specific
needs: accuracy and speed.

5.1. Reducing and Appending

e OpenGL specification for WebGL contains many built-in OpenGL functions. By default, many autocompletors will
contain all the OpenGL functions, storage classes, built-in math functions, reserved words, etc. To reduce cluer from
the autocompletor, anything relating to the vertex shader is removed. Furthermore, anything that is not commonly used
is removed. Predefined variables and functions are included in the autocompletor list, for example: colors, shapes, helper
functions, and uniform names. is custom reduction and addition creates a highly optimized list, meaning that in most
cases our desired autocompetion match is reduced to a single solution faster.



Figure 4: Example of autocompletor showing possible known completions.

5.2. Defining Snippets

Snippets are generally small code blocks that are entered to save time or reduce errors. e snippets are wrien by the
user into a configuration file. e autocompletor’s engine builds snippets from the file as seen in the code example below.
e first line is a comment that appears when the autocompletor’s snippet pop-up appears. e second line starts with
the snippet declaration, followed by the snippet’s key. e third line is the snippet’s value. is particular snippet enters
the circle helper function. To breakdown further, ${} indicates the location of a parameter, and where the next tab-jump
point is. e number inside the curly braces gives the tab-order of the parameters. e text following the colon will
be the default value for those parameters. In this case, the word float is a hint as to the type of value that needs to be
entered. Note the fih tab-point was added as a quick way to jump outside the parenthesis.

# circle

snippet cir

circle(${1:float}, ${2:float}, ${3:float}, ${4:float})${5}

In figure 5, the circle fuction has been autocompleted. e first value is highlighted, meaning it will be overwrien when
typing begins. Pressing “tab” will jump to the next “float” parameter and highlight it for overwriting.

Figure 5: Example of autocompletor completing the circle function snippet.

5.3. Common Snippets

Some testing has led to the implementation of a variety of snippets; the following are a few of the key:value pairs
integrated into the IDE. e first example is a for loop with conditional check against an integer (a float version also
exists with the forf snippet key). e second example, iff, we recognize from the conditional help section above. Last is
a selection of commonly used data types.

//snippet fori

for (int i = 0; i < int; i++) {

}

//snippet iff

if (false) {

}

//snippet vv

vec2

//snippet vvc

vec3

//snippet ft

float



6. External Input

Many audio visual performers use hardware input devices to launch processes, activate functions, adjust values, or simply
inject a sense of physicality into the live performance. In a live coding performance, additional hardware devices can
similarly help to improve efficiency, facilitate real-time and continuous access to parameter values, and inject a more
perceptible layer of physicality. Additionally, performers frequently configure their soware to communicate with each
other. is inter-performer communication adds a rich cohesiveness.

For this IDE, the Open Sound Control (OSC) protocol was implemented. is was chosen due to a familiarity with OSC,
a need to receive OSC messages from both hardware (iPad with Lemur⁵) and other performers, and in preparation for
the future possibilities that may include a variety of data types and ranges.

Howmight this be used? Let’s say that an OSC device produces data that ranges from 0.0-1.0 and is coming into an GLSL
shader as a uniform labeled fader, see the code example below.

uniform float fader;

void main() {

vec3 black = vec3(0.0, 0.0, 0.0);

vec3 white = vec3(1.0, 1.0, 1.0);

color = mix(black, white, fader);

gl_FragColor = vec4(color, 1.0);

}

With an external OSC controller, a performer could blend or mix between the black and white colors. is method
could be applied to back buffers for adding motion blur, mixing effects, cross-fading between effects, or provide more
accurate cuing with audio transitions. While seemingly trivial, in the above example, this OSC technique provides a
stream of continuous numbers whereas the deliberate typing of numbers into the autocompiler may have very jarring
or unexpected/undesired outcomes. is input method resolves the 0.9 to 1.0 discontinuity problem as mentioned in the
decimal cheats section.

7. Conclusion

Live coding introduces a particular set of technical, performative, and aesthetic challenges. While this is certainly not
intended to be a comprehensive survey of these issues and their potential solutions, it is meant to contribute to the
already emerging dialogue, framed primarily by the author’s work. To this end, the aforementioned strategies for live
coding graphics are applicable to other areas of live coding.
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ABSTRACT
This is a short paper that proposes an approach to the activity of live coding as an artistic configuration
constituted in a creative practice from improvisation, openness and constant exploration. I just want to
share some thoughts about sociability in live coding, in terms of “imagined community” (Anderson 1991) to
address this collective aspect.
The approach is anthropological, through ethnographic field work from which the method seeks to explore
some combination between a scope, actors and activities and a cut of reality that encompasses practices,
values and formal rules. The aim of the ethnography is to address the distinction: “between the real and the
ideal  culture,  between  what  people  do  and  what  people  say  they  do,  and  hence  between  the  field  of
practices, values and rules” (Guber 2001).
This work seeks to provide some characterization of a collective artistic expression in constant process,
which mediates and constitutes sociability and subjectivities in a sociotechnical context.

1. INTRODUCTION: COLLECTIVELY IMAGINING 
In live coding activity, there is a core intention to explore the capabilities to skillfully improvise with code in
a challenging way, as in the following field testimony:

I like the idea of being able to make music using lines of code, and am fascinated about the kind of
dexterity and variety of sounds which can come from the simplest bits of code. (testimony A)

But, there is also an intention of further developing a kind of participatory community, in which everyone
can participate  without  being  required  programming  mastery,  as  Alex  McLean  explains  to  Dazed  and
Confused magazine1:  

Many live coders make and adapt their own programming environments: that takes some experience.
But proficiency at coding dance music is different to making financial systems or whatever. I've run
workshops where I've got non-programmers making acid house together in a couple of hours. I think
there's  real  possibility  to  make  producing  algorave  music  more  like  drumming  circles,  where
beginners can just join in and learn through doing.

Live coding activity arises from the start as a collective activity, both keeping that daily interaction with
each other  in  the mailing list,  through the publication /  socialization  of  its  programming languages or
during the performance by opening a connection with the audience, as a live coder told me: 
The idea is to show and share your compositional thoughts with the audience (testimony B)

In order to ascertain the participatory intention, I would like to refer to sociability in terms of “imagined
community” (Anderson 1991). According with Benedict Anderson, all communities larger than primordial
villages of contact are imagined. Communities do not be distinguished by their falsehood or legitimacy, but
by the style in which are imagined (Anderson 1991)  then, in this sense,  there would be an idea and a
collective construction, from that idea.
Often, in shared conversations, interviews and small talks with live coders, many of them refer to the idea of
a cultural growth, in different ways:
1Full article in: http://www.dazeddigital.com/artsandculture/article/16150/1/what-on-earth-is-livecoding.
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A participatory community, contribute to a culture that creates a positive environment for everyone
who wants to participate,  regardless of country of origin and gender.  It is about  being open and
generate closeness and inclusion (testimony C) 
////// In the UK there are only a few pockets of coders scattered around. This makes it hard for any
kind of live coding scene to gather momentum. When I play a gig, I'm the oddball using a computer
and typing to make music on the stage in between 2 rock bands. When playing the Algoraves I met
the guys from Mexico City and they talked about how they had their own scene out there and it was
like a family, putting gigs on and creating a community together. If these little pockets happen more
often, then the future of live coding can only get stronger. (testimony D) 
I think the development of languages that become more spatial, collaborative, social, expressed in a
wider range of ways, and generally more like a human language. I think the growth of localized live
coding communities, are really nice to see, and will make things really real. (testimony E)

For anthropologist Georgina Born, however music has no material essence, it has a plural and distributed
materiality. Its multiple simultaneous forms of existence - as sonic trace, discursive  exegesis, notated score,
and technological prosthesis, social and embodied performance – indicate the necessity of conceiving of the
musical object as a constellation of mediations: 

Music requires and stimulates associations between a diverse range of subjects and objects – between
musician and instrument, composer and score,  listener and sound system, music programmer and
digital code. Compared with the visual and literary arts, which we associate with a specific object,
text or representation, music may therefore appear to be an extraordinarily diffuse kind of cultural
object:  an  aggregation  of  sonic,  social,  corporeal,  discursive,  visual,  technological  and  temporal
mediations – a musical  assemblage, where this is understood as a characteristic constellation of such
heterogeneous mediations (Born 2011).

These  mediations take  place  in  four  levels  of  social  mediation:  (1)  music  produce  its  own and diverse
sociabilities; (2) music has the capacity to animate imagined communities, aggregating its adherents into
virtual collectivities and publics based on musical and other identifications; (3) music refracts wider social
relations and (4) music is bound up in the social and institutional forms that provide the grounds for its
production, reproduction and transformation (Born 2011).  For Hennion, the work of art as a mediation
means to review the work:

every detail of gestures, bodies, customs, materials, space, languages, and institutions that it inhabit.
Styles,  grammar,  taste  systems,  programs,  concert  halls,  schools,  business...  Without  all  these
accumulated mediations, beautiful work of art does not exist (Hennion 2003). 

As the author emphasizes, the work of mediation involves to stop attributing everything to a single creator
and realize that creation is much more widely distributed, and is performed in all the interstices between
these successive mediations (Hennion, 2003: 89).
Live coding has been constituted as a collective artistic expression that mediates and builds on sociabilities
and subjectivities in a socio-technical context, then, Born´s four levels would be given by socio-technical
mediations in the case of the live coding scene, because when technology is not only appropriate but, is
being experienced by the people, is in turn built and the own experience with technological devices is what
makes sense (Bijker 1987).

2. NEW MEANINGS IN PRACTICE
If for many live coders to reach dialogue with computers through live coding or develop new programming
languages has new senses, like a political one, for example, from the proposal to achieve a dialogue with
software, or software shaped as software art, or to bring programming to diverse audiences, showing the
screens during the performance:
I like to think that the Toplap  statment of "show us your screens" helps the laptop musician demistify the
processess of what he/she is doing. It also gives the viewer a way in to what the coder is doing (testimony
F).



To  create  a  participatory  community  also  has  new meanings.  For  Pierre  Bourdieu,  “the  categories  of
perception of the social world are essentially the product of the incorporation of the objective structures of
the  social  space”  (Bourdieu  2002),  now,  what  happens  when  people  try  (from  theory  and  practice)  a
profound change in these objective structures? Bourdieu points in this sense that “knowledge of the social
world and the categories which make it possible, are the stakes of the political struggle, a struggle which is
inseparably theoretical  and practical,  over the power of preserving or transforming the social  world by
preserving or transforming the categories of perception of that world” (Bourdieu 2002). Here inclusion and
openness, so valued and promoted by the live coders, and the desire to create a "participatory community"
can lead us to an analysis that takes into account the liminality of an “imagined community”. 
A search beyond a cultural and ideological field of production, is for Victor Turner a “communitas” (Turner
1969). The concept of communitas can be helpful at this point, Victor Turner has used it to talk about "open
society, which differs from the structure or closed society" (Turner 1969). The author chooses to speak of
communitas instead of the community because: 

For both, individuals and for groups, social life is a kind of dialectical process involving successive
experiences of ups and downs, communitas and structure, homogeneity and differentiation, equality
and inequality. (...) In this process the opposites of each other and are mutually indispensable (...) In
other words, each individual life experience has alternate exposure to structure and communitas, as
states and transitions (Turner 1969).

Transitions where usually  appear  figures,  representations,  as  signs of  moral  values  of  communitas,  are
opposed to coercive power of the supreme political rules, explains Turner, because from the structure all
manifestations of communitas appears as dangerous and anarchic (Turner 1969). The process of liminality is
negative for primary social structure, and a statement of another order of things and relationships as well.
Communitas,  he  explains,  is  the  product  of  individual  human  faculties  including  rationality,  will  and
memory, which break through the interstices of the structure, in liminality, in experiences of unpredictable
potential: 

Liminality, marginality, and structural inferiority are conditions in which are frequently generated
myths, rituals, symbols, philosophical systems and works of art. These cultural forms provide men
with a set of templates or models which are, at one level, periodical reclassifications of reality and
man´s relationship to society, nature and culture. But, they are more than classifications, since they
incite to action as well as to thought. Each of these productions has a multivocal character, having
many meanings, and each is capable of moving people (Turner 1969).

Liminality is present in some ways in live coding: new projects and proposals, the search to demystify the
relationship with technology, making the code a craft or artistic product, but, more than anything, in the
construction of its "participatory community", a collectively imagined community. Liminality of space to
express themselves and build various proposals raises transformations not only in the artistic or cultural
field but also institutional, the live coding scene involves building an entire world, an art world in terms of
Becker (Becker 1982). According to the author, who cooperates in producing a work of art do not do it from
nothing but rest on past agreements or custom / conventions, which usually cover the decisions to be taken,
and this makes things simpler (Becker 2002). However, Becker explains that people can always do things
differently, if they are prepared to pay the price:  

In  general,  breaking  with  existing  conventions  and  their  manifestations  in  social  structure  and
material artefacts increases artists´ trouble and decreases the circulation of their work, but at the
same time increases their freedom to choose unconventional alternatives and to depart substantially
from customary practice.  If that is true,  we can understand any work as the product  of a choice
between conventional ease and success and unconventional trouble and lack of recognition (Becker
2002).    

The increasing of such problems Becker mentioned, a kind of output that live coders found to this difficulty
in building their "art world" was to place their art in the process more than in a finished product. Musical
improvisation helps to build another perspective from both, the programmer and programming languages.
The emphasis on process, in which materials, digital and analog, are more important than materiality, or a
final product allowed live coders to advance in the construction of their activity, and their world, always
changing, always exploring the role of technology in art and art in their technological forms. It is there, in



the  construction  of  those  environments  in  process,  where  live  coders  feel  creative  and  create  from
improvising, in the space of active materials.   
"The materials are active components of a world-in-training. Wherever life is happening, they are constantly
in motion - flowing, scraping, mixing and mutating” (Ingold 2013) in the case of live coding, the materials
flow in direct relationship with the artist in the act of experience. 
Ingold and Hallam say the difference between improvisation and innovation is that the first characterizes
creativity  by  way of  their  processes  (movements),  while  the  second does  so  by  way of  their  products
(results) (Ingold & Hallam 2007), in this sense we can say live coding is expression and movement, which, in
any case raises an end in the process itself.  

3. CONCLUSIONS
Regarding the social aspect or social settings from artistic practices: “art worlds” (Becker 1982) if, as Howard
Becker explains, conventions make it easier and less costly to bouil an art wolrd, but more expensive and
difficult  to  make  deep  changes  (Becker  1974),  then,  the  case  of  live  coding broadly  contributes  to  the
acceptance of change as a constant, within a framework in which artistic expression is a process rather than
finished  product  (Di  Próspero  2015).  The live  coding  scene  makes  the  change,  openness  and  constant
exploration practices that constitute a creative activity.
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ABSTRACT

We introduce Live Writing, asynchronous playback of a live coding performance or, more generally, writing. e con-
cept of Live Writing is realized in a web-based application which logs every keystroke that a writer makes and let the
writing later playable by the audience or the readers in real-time. e goal of Live Writing is twofold. One, it aims to
support collaboration between musicians by reproducing a live coding performance based on keystroke data logged in
the platform. is offers a new way for a live coder to archive live coding music and to communicate with others in
asynchronous fashion. Two, it aims to transform wrien communication into a real-time experience so that a writer can
display a writing to readers in a real-time manner as if it is being typed in front of the readers. We explain the design
and the implementation of the system and demonstrate two different use cases of the system: live coding and writing.

1. Introduction

Live coding music is a type of wrien communication between human and machine expressed in programming language.
At the same time, the algorithmic representation of music is a window into a composer’s thoughts. erefore, in the case
of collaborative live coding, code sharing is an important part of communication, understanding each other’s thoughts,
and exchanging ideas. Most of the times, the collaboration in this live coding practice occurs in real time, due to its live
nature and asynchronous communication being limited. However, being able to archive and replay live performances
can further expand and enable important aspects of live coding performance culture. Benefits include the ability to
(1) collaborate asynchronously, (2) incorporate last live performances into reinterpretation, reappropriation, and the
creation of a persistent performance corpus. Static code is an core outcome of expressing compositional ideas that arise
throughout the preparation process of a live coding performance. Nonetheless, program code itself does not represent
the entire progress of the music performance. Static code does not contains temporal information of code execution nor
captures a performer’s virtuosity, such as skills and techniques to utilize existing code quickly enough to make changes
in the music in a timely manner. In addition, some code wrien on the fly may not even exist in the final code that
remains aer the performance. While the screen recording of a live coder’s play may capture these kinds of real-time
gestures, it is fixed media in a non-symbolic format. Hence, it is impossible to get textual data from the recording so as
to copy and transform, for example, someone else’s code. is calls for representations that that capture the dynamic
and evolving character of live code production in a format that is readily modifiable. To this end, we developed the Live
Writing platform. e Live Writing platform logs all keystrokes made by a live coder with timestamp information in
order to reproduce the musician’s play later. e system can be used to archive any live coding performance ranging
from individual practice to actual performances in public. e term “asynchronous” collaboration in “live” coding sounds
contradictory. However, it seems potentially exciting to envision a live coding system such as one that will facilitate
asynchronous collaboration. In other words, how do we utilize technologies to help a musician communicate with other
musicians without needing to be present at the same time? As an extreme example, how could a live coder reproduce
a piece that has been wrien by a live coder who has since passed away. Naturally, this poses two questions: how to
notate a live coding piece and how to archive a live coder’s playing.

Our second goal with Live Writing is to transform, as the name suggests, general wrien communication into a real time
experience. Writing is rich form of communication and we live in an age when we produce large volumes of writing
through digital platforms such as the World Wide Web, and mobile devices. e Live Writing platform lets writers (not
necessarily just live coders and artists but anyone) present their writing to readers in the same way that it was typed
at the time of creation. e real-time rendering of writing gives much more expressive power to the writer and gives
readers the intimacy of peeking at someone’s computer screen in private. e core idea of Live Writing is to reveal the
incomplete stages of writing and of the textual dynamic as part of the wrien expression. For a quick demo of Live
Writing, visit http://www.echobin.com/?aid=aboutechobin. A screenshot of Live Writing platform is shown in Figure 1.
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Figure 1: a screenshot of Live Writing example. e poem wrien by Pain.

In this paper, we introduce the background upon which the idea is built. We further motivate the core ideas, and describe
the current implementation. Demonstrated on the web browser are examples in the context of live coding as well as
writing. Finally, we conclude with future research opportunities offered by the system.

2. Asynronous Collaboration in Live Coding

2.1. Live Coding as Network Music

Networked communication and data sharing can facilitate collaboration among live coders. e potential of
networked collaboration in live coding has been present from the inception of live coding (Collins et al. 2003). Power-
Books_UnPlugged exemplifies an interconnected network ensemble by sharing code over a wireless network among live
coders and enabling sound dislocated from the code (Rohrhuber et al. 2007). Similarly, aa-cell added network capability
to Impromptu to facilitate collaboration over the local network for sharing and executing code remotely (Brown and
Sorensen 2007). e scale of collaboration in live coding has reached that of an ensemble (Wilson et al. 2014) and
a laptop orchestra (Ogborn 2014c). Recently, the authors made an extension to urMus (Essl 2010), a programming
environment for mobile music, to support multiple live coders, addressing issues that emerged for collaborative live
coding in general (Lee and Essl 2014a).

In our previous work, we applied existing frameworks coming from the tradition of network music to the previous
works of networked collaboration in live coding (Lee and Essl 2014b). For example, we used Barbosa’s framework to
classify computer-supported collaborative music based on synchronism (synchronous / asynchronous) and tele-presence
(local / remote), as shown in the Figure 2 (Barbosa 2003). is is used to learn opportunities in live coding and to
identify relatively underdeveloped areas in the classification. Most networked live coding performances fall into the
local/synchronous category, where live coders are co-located and play at the same time. Recently, researchers explored
remote/synchronous collaboration in live coding music: networked live coding at Daghstuhl Seminar (Swi, Gardner,
and Sorensen 2014), extramous, language-neutral shared-buffer networked live coding system (Ogborn 2014d), andGibber,
a live coding environment on a web browser, which supports remote code edit and run (similar to Google Doc) (Roberts
and Kuchera-Morin 2012). However, most previous live coding ensembles have focused on collaboration in synchronous
fashion (the lower half of the chart in Figure 2).



Figure 2: Classification Space for Network Music. Adapted aer (Barbosa 2003).



2.2. Music Notation in Live Coding.

In the traditional sense of music notation, where the objective is for a composer to communicate with performers in the
future, the music notation for live coding is not well-established for discussion. Traditional music notation is certainly
not well fied for notating live-coded music. is is because live coding is a highly improvisational and interactive form
of art where composition occurs at the time of performance; in live coding there is no clear distinction between composer
and performer. Rather, a live coder is “composer-performer.”

Indeed, the discussion of notation in live coding has been focused on its real-time usage at the performance. In this
context of real-time composition/performance, the code (either textual or graphical) serves as a music score and diverse
scoring approaches as code representation have been aempted (Magnusson 2011). Graphical visualization of the code
is effective for beer audience communication (McLean et al. 2010). In addition, the real-time music notation can be a
medium that connects live coding musicians and instrumental performers (Lee and Freeman 2013; Hall 2014).

2.3. Ariving a live coding performance.

It seems that, for the time being, the music notation for live coding music with the traditional goal of documenting a piece
may not need to reach a single conclusion. Instead, live coders should be able to archive live coding performances for the
following benefits: i) an archive of a live coding performance can be used to exchange ideas and data with collaborators,
ii) the collection of live coding pieces can be fruitful, from a long-term perspective, for the live coding community as a
way to transfer knowledge, providing inspiration and developing the field for posterity.

One immediate solution to archive a live coding piece is to save, as electronic files, the program code that was used in the
performance. However, the code alone is not enough for a live coder to document a music piece in a way that someone in
the future (including onesel) would be able to repeat the performance. Static code itself cannot reproduce a live coding
piece because it does not contain the performance aspects of algorithms execution. Furthermore, a certain amount of
virtuosity in live coding is involved with real-time manipulation of code, which is not well exposed in the final text
of the code. Practitioners use static code in combination with other tools such as audio recording, videotaping, screen
recording, or open form score (e.g., textual or graphical notes) as part of the documentation in rehearsal, composition,
and preparation steps of a performance.

Archiving a live coder’s performance will have more potential in the scenario of a live coding ensemble to support
asynchronous communication among the members. At the moment, the most obvious collaboration strategy that all live
coding ensembles take is a combination of rehearsals and individual practice. However, it will be practically challenging
to find the time (and the place) that every member of the ensemble can participate. e problem will worsen in scale,
such as in the case of a live coding orchestra (Ogborn 2014c). Alternatively, each musician can do at-home practice to
create new ideas for the ensemble and the individual. However, communication is delayed until the next gathering. To
that end, a live coding ensemble will benefit from developing a new format of archiving a music performance, which will
eventually support non real-time collaboration among members.

Lastly, archiving a live coding performance will enhance the composition process for a solo live coder. A live coder can
log each composition session to document the progress; the archive will help the composer capture new ideas, which
appear of a sudden and go away during the exploration and the improvisation.

2.4. Live Writing: Documenting and Replaying Textual Dynamics of Live Coding

e live coding piece performed on Live Writing platform will be logged in the keystroke levels with timestamp infor-
mation so that the generative music can be reproduced by the typing simulation. Given it is sequenced data rather than
fixed media, this differs from audio/video recording, and it is different from the music notation, as it can be used to
capture a particular performance. It provides symbolic information, which a musician can easily copy, duplicate, and
make changes to. e log file generated from LiveWriting platform is analogous to a MIDI sequence file, which describes
musical dynamics as an intermediate oen input-centric representation. Live Writing serves a similar function in terms
of capturing input-centric dynamics of text entry. Figure 3 shows the analogy between traditional music and live coding
in terms of ways to archive a music performance.

e highlight of Live Writing platform is that it provides temporal information of the live coding piece that static code
cannot. Replaying the code of a piece can inform the order of code wrien, the timing of execution, and the virtuosic
moves of a live coder, elements that would have been impossible to know in the final code. e playback feature could
help transfer practical knowledge of carrying out the piece and help people practice along with collaborator’s simulated
performance. e idea of Live Writing draws upon existing systems that enable asynchronous displays of code. In



Figure 3: e methods to archive music performances in traditional music and live coding.

particular, Live Writing platform is directly inspired by Ogborn (2014e)’s performance using Daem0n.sc system, which
types the text of a file automatically—in sync with the default metronome in Supercollider. Gibber provides a playground
in which people can publish and browse Gibber code so that the hub supports asynchronous collaboration in a broad
sense within the community (Roberts et al. 2014). In renoscope, Magnusson (2014) introduced code snippets in a piano-
roll-like notation where it is used as a secondary composition/performance interface, potentially a great archive format
to document a performance on the system. In non-artistic cases, Google Wave, which is no longer available, contained
the playback feature at the email transaction level so that one can understand the temporal order of email messages
especially for those who got included in the conversation later. Lastly, thecodeplayer.com implements keystroke level
playback of writing code but it is not currently accessible to the public to create contents(“ecodeplayer.Com”).

2.5. Beyond Arive: New Media for Collaborative Live Coding

e symbolic representation of the archived performance offers novel opportunities for asynchronous collaboration
among musicians. A live coder can access the code generated on the fly easily while a screencast or the final static
code cannot offer such data, i.e., copy the code in the middle of the playback simulation and paste it on one’s editor to
use existing code to develop ideas, and to create collaborative musical paerns. It can be used throughout the rehearsal
process for a live coding ensemble to sketch ideas and exchange code over emails, and to rehearse alongwith the ensemble
members asynchronously.

Keystroke log is a valuable asset for monitoring/analyzing a live coder’s performance. It is not only great for self-
reflection on one’s rehearsal/performance but also a useful material to analyze a live coder’s performance. e per-
formance log can be used to analyze live coding musicians’ play and learn complex behaviors that are not translated
easily from audio, static code and the artist’s statement, for example, the virtuosity of a performer in programming and
musical style. Such research has been done to create a performer’s fingerprint (Swi et al. 2014) and would have been ex-
pedited and enriched with the corpus of logged data accumulated in the system, otherwise, such data should be manually
annotated from the screencast.

Lastly, supplementing visualization/navigation techniques to be implemented in the future (the navigation bar, keystroke
density visualization, temporal typography) will offer an interactivity in the middle of playback of live coding. For
example, a reader can pause, modify, fork or remix a performance and create a unique live coding collaboration that can
occur over a long time. Forthcoming features of the Live Writing system will be discussed in detail at the end of this
paper.

3. Written Communication into a Real Time Performance

In this section, we switch the context of discussion from live codingmusic towriting in general. First, imagine a performer
going on stage and starting to write a poem (whether it is typed on a screen or wrien on a piece of paper, shared with the
audience). e live coding community would easily call this a live writing performance and the performer would need
nothing more than sheets of paper and a pen or a text editor on a laptop projected on a screen. Live Writing platform



allows users to dynamically present a writing; readers can read the article as if it is being typed right in front of them. It
does not necessarily need to be a synchronous performance in public but anything wrien in private (for example, poem,
essay, instant messages, email, or tweets) can be presented as if readers were watching the writer typing in real time.
e same platform that was used to archive live coding performances is repurposed for this new expressive art.

3.1. Keystroke Logging and Playba of Writing

e realization of Live Writing platform is to utilize keystroke logging on a computer. For a long time now, the idea
of logging user input from a keyboard has been a simple but powerful research method in many different contexts.
Keystroke Level Model (KLM) was an important aspect of research into modeling human performance in many human-
computer interaction tasks (Card, Moran, and Newell 1980). It was also used to analyze email organization strategy
(Bälter 2000). Keystroke dynamic has also been used for verifying identities. Habitual temporal paerns of key entries
provide a behavioral biometric useful for identifying individuals (Joyce and Gupta 1990; Monrose and Rubin 2000).

In helping analyze real-time writing behavior, keystroke logging has become a common approach in the field of writing
research. It provides a non-intrusive and inexpensive technique to monitor user inputs. Writing researchers have de-
veloped a number of keystroke logging applications—Inputlog(Leijten and Van Waes 2006) and ScriptLog(Strömqvist et
al. 2006) are two examples of such programs. Most keystroke logging applications include real-time playback recorded
keystrokes and it is an effective approach to help subjects account for their writing in retrospect, which is less intru-
sive than having them think aloud while writing (Latif 2008). ese applications are mainly for the research purpose of
real-time writing analysis rather than for writing in general public.

3.2. Live Writing : Writing as Real-Time Performance

e direct inspiration of the notion of live writing is live coding. Writing is an expressive process guided and adapted by
thoughts that evolve over time. By revealing the real-time writing process to readers, Live Writing lets a writer show the
thought process and the intermediate stages of the writing as it is typed, including typos, corrections, and deletions. is
principle is well captured in the following statement of the TOPLAP manifesto: “Obscurantism is dangerous. Show us
your screens.” We expand the same idea to writing in general. Showing the entire process of writing as it emerges sheds
light on the trajectory of thoughts and provides more expressive power than when reading final text. It is analogous to
revealing the thought process of a composer as a form of algorithm in live coding music.

e real-time rendering of writing in the same way that it was typed is certainly more expressive than static writing.
ere are various kinds of writer’s emotional states (such as contemplation, hesitation, confidence, or agitation) that can
emerge during the process of typing based on temporal paerns, for instance, pause, bursts, or corrective steps. e
fact that every single entry is shown in the final outcome transforms writing in general into a creative experience in
real-time, similar to musical improvisation. Indeed, such an improvisational nature is prominent on the World Wide
Web, for example, vlogging, podcasting, live game streaming, and video tutorials with screen recording and voice over.

It may be argued that calling this “Live” Writing is somewhat misleading as the Live Writing platform enables asyn-
chronous (that is apparently not “live”) uses. However, we hold that the very process of writing is the live act in this
case, and this liveness of the writing process is captured, hence justifying the use of “live” in this context. Moreover,
by explicitly capturing the the temporal dynamic of the writing process it suggests a changed mindset in the writer
with respect to the meaning and performative function of the writing process itself. A writer can now ponder the ar-
rangement of text over time and leverage the articulation of the temporal dynamics (like a composer organizing sound
to make music). is can be premeditated as in compositions, or improvised. Further it suggests a deliberation of the
delivery process even if the material is fixed, leading to an expressive layer of interpretation that transcends yet poten-
tially interrelates with the text. One can see this analogous to the notion of a “live” recording. e production process
is live, yet the reproduction method is not. is does by no means preclude the consideration of live writing in a fully
real-time synchronous performance seing. In fact we are currently exploring synchronous live writing piece as a form
of audiovisual performing arts, of which a visualization technique on typography is discussed elsewhere (Lee and Essl
2015).

4. Design and Implementation

Live Writing is implemented as a web application in order to be easily accessible from a variety of platforms and devices.
e web browser is chosen to make the platform language neutral (as long as the live coding language is textual). In
addition, the web browser is one of the most popular writing platforms today. Many live coding language environments



allows the editing part to be separated from the local machine and to reside on the web browser or web-based editors
(such as Atom, Sublime Text, or Brackets I/O). is would work, of course, for live coding languages built into the web
browser. We realize this system cannot support many live coders who use other popular editors (e.g. emacs). However,
we chose the web browser given it is a good platform-independent application and the use of web browser is on the
increase in live coding. Eventually, modern web-based editing APIs such as CodeMirror and ACE have been and will
be evolving to support many functions like shortcuts and macro to replace such editors or the Live Writing feature can
be easily implemented in across multiple editing environments if needed. It should be addressed that the system will be
limited to textual live coding languages but the idea can be extended to graphical languages.

e API is designed to extend existing an html object <textarea> or code editing APIs (e.g. codemirror, ace) so that it can
easily extend existing systems on the web browsers. In the following section, the implementation of the application for
the writing purpose is described first. Demonstrated later in this section is an archiving and playback example built on
top of Gibber.

4.1. Live Writing App for Written Communication

For the writing purpose of Live Writing, the application is publically available for anyone to use http://www.echobin.
com/. e current implementation is craed with minimal design; it has only one clean slate, an initial dialog with brief
description, screen-sized <textarea> objects, and a few buons hidden on the side (see Figure 1). Once a user presses the
start buon, all keystrokes and mouse cursor clicks made inside the <textarea> will be recorded on the local machine.
And then, by pressing the post buon on the right side, the user can post the piece of writing. Once the data is posted,
the user is given the link that accesses the real-time playback of the writing. e link contains the article ID and anyone
with the link can view the playback of the writing. erefore, access control of the writing is up to the writer and whom
he or she chooses to share the link with, an action that can be easily done via email, a facebook post, or instant messages.

e web application is realized in javascript/jery/AJAX and node.js. We released the code as an open-source API so
that any html <textarea> can be extended to feature keystroke logging and playback by including one javascript file. e
server runs node.js script which handles the static files and store/retrieve recorded keystrokes log in json format. All the
other functions of keystroke logging and playback is implemented and run in the client machine which the writer uses.
e logged data is not stored in the server until the user chooses to post the writing. Alternatively, a user can choose
to download the log file instead of posting to the server, if the user wants to keep the logged data locally. Anyone who
has the log file will be able, by uploading the file, to replay the writing. Providing raw data in the file will be useful for
extracting high-level information such as keystroke dynamics or behavioral paern when processed. We hope that this
supports researchers wanting to use this as a keystroke-logging application.

To implement playback, the keystrokes logged are simulated by specifically reproducing what the keystroke would
change in the content of <textarea>. In other words, a web browser does not allow, for security reasons, javascript
to generate the exact same keystroke event. Instead, for example, to reproduce a user’s pressing of the “s” key, it has
to append the “s” character to where the cursor is in the <textarea> at the moment. Note that the <textarea> used in
keystroke logging is again used for playback. Improvements to the website are in progress so that a user can customize
the writing not only visually (font type, size etc.) but also through its playback seing (e.g.„ playback speed, navigation
across time, etc.).

4.2. Playba of live coding : Gibber code on codemirror

To demonstrate the archiving and replaying features of Live Writing, this study has chosen Gibber (Roberts and Kuchera-
Morin 2012), a live coding environment on a web browser. It could have been possible to create the same features with
other live coding languages (e.g., Supercollider) that can be edited on a web browser and communicated with the live
coding engine by sending textual data to the localhost. Because Gibber is built into the web browser, it makes the demo
accessible to public without any configuration and installation. Lastly, for the code-editing environment, the study uses
Codemirror (Haverbeke 2011). Codemirror comes with a set of features readily available for programming (e.g., syntax
highlighting, keymap binding, autocomplete).

e user experience in the Gibber demo is similar to that of the writing web application introduced above. In terms
of implementation, however, a few differences from the writing scenario should be noted. is uses high-level events
(onchange, cursor activity) supported from codemirror instead of low-level events (e.g., keyUp, keyDown, keyPress) in
<textarea>. In addition, the pressing of shortcut keys related to code execution (Ctrl-Enter, Ctrl-.) is separately stored
as a message so that simulated typing will trigger a code run to get audiovisual outcome while playback. e working
demo is available at http://www.echobin.com/gibber.html. For a simple playback demo without entering Gibber code,
visit http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA which shows the demo captured in Figure 4.

http://www.echobin.com/
http://www.echobin.com/
http://www.echobin.com/gibber.html
http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA


Figure 4: Screen captures of Gibber Demo Audiovisual outcome generated automatically by playback of Gibber code over
time (from le to right). is demo is available at http://www.echobin.com/gibber.html?aid=OKDMWHgkDCdAmA

5. Conclusion

In this paper, we have introduced Live Writing, a web-based application which enables keystroke logging for real-time
playback of the writing. e motivation for this idea is to facilitate asynchronous collaboration among live coders and
to archive a live coding performance in an informative way. Additionally, the Live Writing platform is repurposed for
general wrien communication and has potentially turned a writing activity into a live coding like performance.

ere are a number of directions that we can take for future research. We plan to integrate Live Writing editor with
existing live coding environments and evaluate the usage of features in practice. It would be desirable to investigate the
system usage in a collaboration scenario like live coding ensemble. On the other hand, with the features of playback, we
would be able to build a live coding gallery in which users publish their piece and people can enjoy the live coding piece
remotely and asynchronously. In addition, we want to make the playback feature not interfere with key entry so that a
spectator can write text while keystrokes are replayed. is will create unique opportunities in a crowd-sourced music
piece that grows over time by people’s participation in a system that is similar to github.

Another ongoing effort is to explore the idea of live writing and to deliver a live-writing performance and a participatory
audiovisual art on a web browser. Currently, temporal typography based on a web browser is in development to augment
the text editor with animated fonts (Lee and Essl 2015). It will afford novel ways of visualizing text in combination with
music and algorithms, associated with the content of writing. To explore the idea of live-writing poetry, an audiovisual
piece is in preparation for a public concert. In addition, visualization of the text will be used to visualize the program
state as well as music in the context of live coding.

Lastly, the Live Writing application will be further developed for general programming and evaluated in terms of human-
computer interaction. We believe that the playback feature of the editor will aract programmers to use the editor
for numerous reasons (self-evaluation, fine-grained version control, online tutorial, collaboration, programming chal-
lenge/interviews). Improvement of the editor in progress includes the navigation bar, typing density visualization, and
automated summary. e collection of source code published to the server can be used to mine valuable information (i.e.,
temporal progress of good/bad coding style) in the context of soware engineering and pedagogy in computer science
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ABSTRACT
Live coding commonly takes pieces of code from algorithmic composition systems. However, sometimes
algorithmic generators either do not consistently show high-level properties, like dramatic transition among
parts, or simply, our aesthetic criterion prefers some particular cases among all the possible. In such cases it
is  useful  to  have  tools  for  exploring  the  output  space  of  generative  systems,  in  order  to  identify  and
categorize outputs with specific properties. This paper presents an approach to creating linguistic rules out
of human-evaluated patterns and their potential  uses in live coding to create high-level structures.  The
methodology starts with a set of sampled examples from an algorithmic system that are evaluated by the
user  through  qualitative  linguistic  variables.  Then,  the  examples  along  with  the  user's  evaluation  are
analysed through an inductive and rule extraction methodology. For a particular example case, these rules
are extracted and evaluated. Its application then as information used for writing code on the fly, as well as
its implementation in the form of filters or generators is presented.

1. INTRODUCTION
Live coding is closely related with algorithmic composition (Collins 2003a). Many times structures are taken
from one domain to the other to supply new material.  However,  it  is  common that the outputs  of  the
algorithmic systems either  do not  consistently  show high-level  properties,  like  real  dramatic  transition
among parts (Collins 2009), or simply, our aesthetic criterion prefers some particular cases, among all the
possible,  for specific parts. In addition, some systems have a large amount of input parameters (see for
example Povel, 2010) that make them difficult to set or control, specially in the context of live performance.
Also, the output space of the systems is normally huge and difficult to explore by hand. Furthermore, in
manual explorations, it is usually hard to establish a relationship between the variables or parameters of the
system and the desired outputs. To overcome this problem within a live coding context, instead of starting
from a blind exploration, it is helpful to have tools to explore the sample space of the algorithmic systems,
in order to identify and categorize the outputs that we want to use. An interesting example, is presented in
Dahlsted (2001), who proposed a system, based in interactive evolution, that finds preferred spots in the
output space of sound objects created by synthesis and pattern generation algorithms. This work undertakes
the  exploration  of  the  algorithmic  system's  output  spaces  by  looking  for  subspaces  with  high-level
structures. By high-level structures we mean musical objects that are derived from the combination of lower
level  musical  objects,  in  this  case  from the  combination of  the  input  variables.  This work  presents  an
approach to creating linguistic rules out of human-evaluated patterns, characterizing those subspaces, and
discusses  their  potential  uses  in  live  coding  to  create  high-level  structures.  The  rest  of  the  paper  is
structured as follows: Section 2 describes the rule extraction methodology through a specific example, and
section 3 discusses the implementation of the rules in the live coding context and outline some ideas for
possible further work.

2. AN INDUCTIVE APPROACH FOR HIGH-LEVEL FEATURES RULE GENERATION
This section describes the rule extraction process through a specific example. For further details about the
rule extraction methodology, the reader is referred to Mugica et al, (2015), Nebot and Mugica (2012), and
Castro et al, (2011). The system's design is shown in Figure 1.
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Figure 1. General chart flow of the rule extraction process.

The first module (1) is the algorithmic system. For this example, a simplified algorithm (shown in Table 1)
based  on  (Collins,  2003b)  was  used.  It  consists  of  a  set  of  probability  templates  for  1  bar,  divided  in
semiquavers for kick, snare and hihat, that produces beat patterns in the style of UK garage. Each number is
the probability (normalized up to 1) for an instrument to play at that point in time.

kick    [0.7, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3]

snare [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.5, 0.0, 0.2, 0.0, 0.0, 1.0, 0.0, 0.0, 0.3]

hihat  [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.7]

Table 1. Templates for UK garage based on Collins, (2003b).

From these templates a training set of 100 patterns, structured in A + B form where A and B are instances of
the algorithm and A ≠ B, was created. The training set was evaluated by the user by means of linguistic
variables. In this example, for each pattern in the training set, the aesthetic quality of  the structure was
labeled as low, medium or high. The data was represented in arrays of length 33. The first 32 values are the
semiquavers of the pattern A + B, with a 4 denoting silence, 1 kick, 2 snare, and 3 hihat. The final value at
index 33 was the user's evaluation: 1 = low 2 = medium and 3 = high. The examples were evaluated and the
data was used as input for the Fuzzy Inductive Reasoning methodology (FIR, module 5). FIR is a qualitative
non-parametric, shallow model based on fuzzy logic (Nebot and Mugica 2012). It obtains a set of pattern
rules, that describe the qualitative behaviour of the system, by means of searching algorithms, like trees and
genetic algorithms. This rule base can be very large and difficult to understand. The Linguistic Rules in FIR
(LR-FIR, module 6) contain the algorithm for linguistic rule extraction starting from the pattern rules set
generated by FIR, and deriving a reduced and manageable set of linguistic rules. The algorithm performs an
iterative process that compacts (or compresses) the pattern relationships obtained by FIR in order to create
interpretable rules. This is done by following several steps that include algorithms for rule compaction and
optimization processes (Castro et al 2011). An example of the resulting rules is shown in Table 2. Rules are
expressed  in  terms of  the values  in  its  variables  (V)  representing the  33 indexes of  the representation
discussed above. For example RULE 1 should be read as: If location 16 has a snare or a hihat and location 24
has a kick and location 32 has a kick, then the pattern will be evaluated as high. For each rule “Classified
pattern” denotes the amount of patterns (taken in A + B form) that satisfy that rule among all others in the
sample space of the algorithm.



RULE EVALUATION

RULE 1:    V16 in 2-3 AND V24 in 1 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 16, FP = 4, PRECISION = 0.8

RULE 2:   V24 in 1 AND V26 in 2 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 16, FP = 4, PRECISION = 0.8

RULE 3:   V10 in 4 AND V24 in1 AND V32 in 1 THEN V33 in 3
Classified patterns 512 out of 16384

TP = 15, FP = 5, PRECISION = 0.75

Table 2. If-then rules obtained by the system and its evaluation in terms of precision. The three rules describe
aesthetic structures user-evaluated as “high” (V33 in 3).

The resulting rules were evaluated using the standard confusion matrix. The Precision (True positive (TP) / 
True positive + False positive (FP)) was used for the evaluation of each rule. In this case, for each rule a 
sample of 20 pattern satisfying the rule was created and evaluated. TP patterns were patterns perceived as 
belonging to the class established by the rule. FP patterns were patterns that satisfy the rule but that are not 
perceived as belonging to the class of the rule.

3. RULE IMPLEMENTATION FOR LIVE CODING
In this section two approaches for the implementation of these rules in live coding are discussed. Both have
been  used  during  live  performance  with  each  having  their  own pros  and  cons.  The standard way  of
implementing the rules, is to analyse them and use the resulting information as a guide to write our code on
the fly. However, as the number of variables in the rules increases, this strategy becomes impractical. In
addition, depending on the venue, sometimes we cannot take the risk of have awkward transition moments
during the performance. In that cases, the safety of having a pre-programmed structure is preferred. Next,
these two strategies are discussed.

As examples of information that can directly be inferred from the rules, let's consider two cases. 
First, in Table 2 it can be seen that kicks are always found in variables 24 and 32. Then, a safe bet 
would be to start by setting kicks in those variables. Another insight that can be directly inferred from 
inspection of the rules is: If we compare the amount of silences (variables in 4) contained in rules 
describing the high class against silences in rules describing the low and medium classes shown in 
Mugica et al. (2015), we find only 1 in the high class, while we find 15 and 9 in the medium class and low 
class rules respectively. From this, we can infer that to produce the desired structure as obtained from the 
listener’s evaluation, it is better to avoid silences, i.e. patterns with higher content of sound information 
were preferred.

When instead of starting from the white screen we choose to write a patch, or prepare some code from the
rules, this can be done in two main forms (without excluding possible combinations): 1. Implement the rules
as a filter, to filter out patterns that satisfy rules that do not belong to the chosen class. 2. Implement
the rules as a module or class for pattern generation.

3.1 Filter of rules v.s. generative implementation

Implementing the rules as a filter can be thought of as follows. Create a pattern, and if the created pattern
does not satisfy any of the rules in the filter, then play the pattern. This implementation produces patterns
that show more variety compared with the generative implementation (discussed next). However, we have
to be careful, given that the rules do not cover the whole output space. The current methodology produces
rules covering around 60% of the space and the precision is approximately 72% (Mugica et al, 2015). Thus,
we may be exposed to surprises that have to be managed as we play.

The generative implementation considers the selected rules, and modifies the original algorithm to 
produce only patterns satisfying one of them. This implementation is perceived as more stable, but at 
the same time, it produces less variability because of the number of fixed variables. To achieve more 
variability, implementations can vary ranging from the random selection of the rules to be 
satisfied, to the use of pondered schemes or probability distributions, assigned according to a 



ranking of the preferred rules. We can also listen to a sample of the patterns created by each rule, 
and select the rules for its application in different sections of the performance by aesthetic criteria.
Finally, a more conservative approach could be to pre-select some structures and launch them in turn. This
has also been tried by using the rules of the prior example. Patterns in  A + B form were selected and then
structured in the form n times (A+B) + n times (A' + B ') + etc., to handguide  the development of the piece.
In this context the cells found could be used as a raw material to fill sections, guiding the  evolution of the
piece by hand.
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ABSTRACT
This paper  explores  the perception that live coding is  a “real-time” improvisatory activity.  It  posits  the
notion that because live coding requires less complex motor skills than instrumental improvisation it may
be less susceptible to the influence of mechanical modes of musical expression. This hypothesis will explore
the concept of goal states, models of memory and the function of reflexes and reactions as a means of
mapping this territory and will provide a framework to understand the various perceptual domains with
which  a  coder  engages  during  a  live  extemporised  performance.  This  exploration  will  engage  in  a
comparative discourse relating live coding to instrumental improvisation, as a point of departure for the
understanding of cognitive functioning in this rapidly developing performance paradigm.

1. GOAL STATES
In a healthy human being, perception works in such a way as to present a cohesive and flowing conscious
experience.  The  resources  associated  with  cognitive  processing  are  managed  by  a  plethora  of  neural
processes in a manner that is optimised, for the most part, to keep us safe and healthy. This allows us to ebb
and flow between mental states which might be processing sensory data in radically different ways but
which are presented to us as a single, fluid experience. One of the key mechanisms in managing the various
activities we synchronously engage in is the monitoring and maintaining of various goal states being held at
any  one  time.  Although  many  contemporary  theories  suggest  goal  pursuit  is  the  result  of  conscious
deliberation and desire (Gollwitzer & Moskowitz, 1996 ,Baumeister & Vohs, 2004), Ruud Custers posits a
convincing argument that goal pursuit can be enacted outside of conscious awareness (Custers, 2009). This
theory  has  been  successfully  tested using priming techniques  and has led  to the development of  such
concepts as  nonconscious will  (Bargh et  al.,  2001),  implicit  intention (Wood,  Quinn, & Kashy,  2002),  or
implicit volition (Moskowitz, Li, and Kirk 2004).

Put simply, a goal state that is not afforded the spotlight of conscious awareness but which begins to rise in
significance, will cause lower priority undertakings to have their monitoring diminished or maybe even
terminated. Consider the metaphor of a driver listening to a play on the radio during a long motorway
journey. For long periods of the journey the cognitive processes involved in the act of driving the car can be
successfully filtered in order to pull focus on the narrative as it unfolds on the radio. The cognitive goal at
this stage is to follow the narrative of the play and so conscious awareness is given over to this undertaking.
As the driver passes a sign post, the ‘radio play - perception’ process is interrupted by the need to devote
attention to the road sign as the goal of the ‘journey process’ has priority over the goal of the ‘radio play
process’. If another car suddenly brakes then the goal of the ‘survival process’ will be triggered by the brake
lights of the preceding car and take precedence over the ‘journey process’ causing an action compliant with
that goal state. 
Many  studies  have  concluded  that  affective  priming  can  have  a  huge  influence  on  goal  motivation
(Winkielman, Berridge,  and Willbarger,  2005),  (Aarts,  Custers & Holland, 2007),  It  is quite possible  that
many of the goal states that comprise an improviser’s practice are in fact instigated by non-musical and
subliminal  stimuli.  After  all,  improvising  performers  are  not  shielded  from their  environment  or  their
history for the duration of their performance and the conceptual and perceptual processes that drive their
musical behaviour are fueled as much by implicitly held concepts as real-time sensory data. The conceptual
and perceptual  processes  that determine the specifically  musical  goal  states in improvised instrumental
music and live coding are therefore likely to be influenced by factors outside of their awareness, not least of
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which is  the short-latency dopamine signal,  believed by some to play a role  in the discovery  of  novel
actions, an area of enquiry which could be very illuminated in this context but which is outside the remit of
this paper (Redgrave and Gurney, 2006). 

Sperber states that perceptual processes have, as input, information provided by sensory receptors and, as
output,  a  conceptual  representation  categorising  the  object  perceived  (Sperber  1996).  The  notion  that
perceptual processes have as their input the continuous data stream of sensory information and that the
outputs from these processes become an input to conceptual processes, can be used to formulate a model of
improvised behaviour, where the parameter (sensorial) space in which the behaviour exists is split between
the internal and the external. The function of memory acquisition and retrieval therefore has an important
role in pursuing goal states (Avery and Smillie, 2013).

2. MEMORY
For  improvised  musical  behaviour  of  the  type  exhibited  by  live  coders,  the  notion  of  perceptual  and
conceptual processes governing their behaviour should be put in the context of memory, particularly as
there  are  significant  differences  between  the  role  of  memory  in  live  coding  and  improvisation  using
traditional instruments. Motor skill execution is of particular importance to instrumental performers but
there is  a consistency across  all  physical  motor skills  in the manner of  acquisition (Newell,  1991).  The
process begins with the repetition of small units of activity, which may be undertaken and evaluated using
multiple senses. In terms of a musical instrumentalist this obviously utilises audible feedback but also uses a
visual and tactile mode of feedback too, such as observing and feeling finger movement on a fret board. The
process continues by constructing larger units from the primitive units of activity and so placing them in a
range of contexts.  At this stage the parameters and variants in the activities and their triggers can be
developed. The repetitive act is in effect embedding a neural program into semantic memory that can then
be triggered and passed a range of parameters. The effect of this is to significantly lighten the cognitive load,
as once the activity has been triggered the detail in the activity can be undertaken with minimal conscious
control, responding only to changes in its parameter space. A pianist could practice a scale in this way and
when  the  motor  units  had  been  fully  committed  to  memory  the  activity  could  be  executed  without
conscious control over each of the component parts.  In fact conscious attention is regarded by some to be
detrimental to the accurate execution of highly complex motor skills (Wulf, 2007). The motor program may
have a speed parameter that the pianist can control but is perhaps unlikely to have a parameter to change
the intervals between the notes. In this way a whole catalogue of functional units can be triggered and left
to run, leaving enough cognitive capacity to be able to undertake other tasks. 
There is a distinction that needs to be made between the acquisition and retrieval of the activity units and
the  mode  and  manner  in  which  they  are  assembled  into  larger  conceptual  units.  Pressing  makes  this
distinction by describing ‘object memory’ and ‘process memory’ as the place where the two exist. Crudely
speaking  ‘object  memory’  for  an  instrumental  musician  would  hold  the  activity  units  associated  with
playing the instrument, often identified by the blanket term ‘technique’. The information required to make
use of the instrumental technique resides in ‘process memory’. This is where the methods for what Pressing
describes as ‘compositional problem-solving’ are held. Methods of sequencing and systems for manipulating
the parameter space of an activity unit are stored in ‘process memory’ and retrieved in accordance with the
particular mode of performance. It is perhaps worth returning to the notion of cognitive capacity in the
light of the processing that ‘process memory’ feeds. Motor activities such as tying up a shoelace or having a
shave are reasonably cheap on effort and attentiveness, because the pathway through the activity units is
comparatively static and can be easily predicted. However, the computational overhead will increase with
human activities that require a higher level of monitoring and real-time manipulation. In the former case it’s
possible for a person to experience a sensation of ‘switching off’ or diverting attention elsewhere. However,
in the case of creative activities, routines executed from ‘process memory’ are likely to be more dynamic,
requiring monitoring and parameter adjustment thus making greater cognitive demands. In this case the
brain has a complex resource management problem to address in order for the activity to be undertaken
effectively. Activities such as game playing and musical improvisation fall into this category but, as with all
other activities they exist on a continuum somewhere between the extremes of static and dynamic. Their
position on the continuum moment-by-moment, is determined by the resource management of the brain but
over a period of time can be influenced by the level of pre-programming, or practice that is undertaken. The
instinct to efficiently resource cognitive activity can be a double-edged sword when engaging in a creative



process such as improvisation. After years of encoding object and process memory it becomes possible for
the whole ‘creative’ process to be undertaken by traversing chains of previously stored units of activity.
Pressing summarises opinion on this matter when he stated that Fitts (1965) labelled this the ‘autonomic
phase’, while Schmidt (1968) referred to it as ‘automatization’. The result for the performer is a sensation of
automaticity, an uncanny feeling of being a spectator to one’s own actions, since increasing amounts of
cognitive  processing  and  muscular  subroutines  are  no  longer  consciously  monitored  (Welford,  1976)
(Pressing  1984).  The significance  of  object  memory  for  a  live  coder  is  therefore  much  less  than  for  a
traditional instrumentalist, although the sensation of being an observer is perhaps more vividly conscious,
rather than reflexive automaticity. 
The role of feedback in the perceptual loop, which gives rise to this type of experience,  is important to
consider. In this context, a close loop system describes the self-referential nature of activity units drawn
from ‘object memory’ and subsequent evaluation for the purpose of error correction. Pressing describes one
such  feedback  model,  known as  ‘closed-loop  negative  feedback’  (CLNF)  (Bernstien  1967),  in  which  an
evaluation of intended and actual output is fed back to an earlier stage in the control chain. It is perhaps this
process  of  evaluation  that  problematises  the  existence  of  closed  and  open  loop  feedback  systems  in
improvisation. The submission by Pressing (Pressing 1988) that a consensus exists which suggests that both
systems coexist seems reasonable, if one acknowledges that material drawn from process memory is also
subjected to an evaluatory process, the result of which bears influence on the subsequent use of activity
units.  In  this  scenario,  evaluation  is  undertaken  at  two  levels  simultaneously,  but  the  nature  of  the
evaluation is necessarily very different. It seems appropriate to apply the principles of closed loop theory to
the evaluation of the primitive motor units, which suggest that a ‘perceptual trace’ of an activity unit is built
up from its  previous  executions  to form a  template against  which to  gauge the  success  of  its  current
execution.  This  theory  (Adams  1976),  is  applicable  to  motor  actions  undertaken  by  improvising
instrumentalists rather than live coders, because of the autonomous manner of their execution but is not
sufficiently flexible to cope with this situation at the ‘process memory’ level. Pressing recognises why this
should be the case when he asserts that in an improvising instrumentalist “the ability to construct new,
meaningful pathways in an abstract cognitive space must be cultivated. Each such improvised pathway
between action units will sometimes follow existing hierarchical connections, and at other times break off in
search of new connections” (Pressing 1984). 
The function of object memory and its relationship to motor skills in instrumental improvisation and live
coding differs significantly due to the interfaces they employ to deliver the results of their creative practice
using process  memory.  The overhead  of  encoding motor  skills  for  live  coding is  less  burdensome and
consequently the cognitive resource gains of ‘automaticity’ are reduced compared with instrumentalists. It
is true that the act of typing is a motor skill but there is less opportunity to build complex amalgamations of
primitive units that facilitate direct control over the sound elements in a rich parameter space. That’s not to
say that fine control over sonic material is not available to live coders but the means of accessing it is more
heavily reliant on process memory than pre-encoded units of behaviour from object memory. Although
William James said in 1890, ‘habit diminishes the conscious attention with which our acts are performed’
(Pressing 1984)  I  am suggesting that  live coders  may be less  susceptible  to the influence of  habit  and
mechanical  modes  of  musical  expression  because  the  motor  skills  required  are  less  complex  than
instrumentalists and consequently less of their behaviour is activated outside of their perceived conscious
control or awareness. There is the possibility that habitual behaviour can develop via conceptual processes
fed by process memory but in this instance there is a much greater opportunity for conscious intervention.
Berkowitz surveys the various metaphors used by instrumentalists across a range of cultures to describe the
ebb  and  flow  between  consciously  controlled  and  automatic  musical  behavior  during  improvisation
(Berkowitz,  2010).  These are often characterised by a sensation of  ‘letting go’  of  conscious control  and
yielding to subconscious processes, described by Stephen Slawek as “an ecstatic state of effortless” (Slawek,
1998). The instrumentalist has at their disposal a vast resource of pre-encoded units of behavior which will
sustain their music making once they have relinquished conscious control, which I would suggest is not
available to the live coder.  There is no doubt that live coders develop a repertoire of syntax and algorithmic
schema they can call upon at speed and that the act of typing may become very fluid and intuitive but this is
someway from Slawek’s  ecstatic  effortlessness.   Perhaps the automatic  writing of  the surrealists is  the
closest textual expression has come to engendering this state but the rigors of coding syntax would not
permit such an endeavor in this context. 



3. REFLEXES AND REACTIONS
I am suggesting that the live coding paradigm differs significantly from instrumental improvisation in its
relationship to cognitive load. In instrumental improvisation the need to reduce the cognitive burden of
conscious monitoring at high speeds is clear, but philosophically this can be a problematic notion for many
musicians.  Pressing  identifies  that  speeds  of  approximately  10  actions  per  second  and  higher  involve
virtually exclusively pre-programmed actions (Pressing 1984).  An informal analysis of jazz solos  over a
variety of tempos supports this ballpark estimate of the time limits for improvisational novelty. (Pressing
1988). It is probably fair to say that for some musicians there is a principle at stake in calling a musical
activity improvisation that overtly draws on ‘learnt’ material. The saxophonist Steve Lacy, in conversation
with Derek Bailey expresses his frustration accordingly when he says “why should I want to learn all those
trite patterns? You know, when Bud Powell made them, fifteen years earlier,  they weren’t patterns. But
when somebody analysed them and put them into a system it became a school and many players joined it.
But by the time I came to it, I saw through it – the thrill was gone. Jazz got so that it wasn’t improvised any
more”. (Bailey, 1992)
Although the causal relationship between the expression of ideas in code and the execution of those ideas
by  the  computer  is  more  asynchronous  and  less  rigidly  fixed  to  a  timeframe  than  instrumental
improvisation,  live  coding,  like  all  other  human  activities,  still  has  to  exist  within  the  confines  of  an
available cognitive resource. It is important to emphasize that information being processed consciously at
any  one  time  is  only  a  small  subset  of  the  overall  cognitive  workload  that  is  being  undertaken.
Consciousness is a system that is fed information and sits beside and competes with a multitude of other
biological  systems  for  resources.  That  is  not  to  say  that  if  all  other  competing  systems  relented,
consciousness’s  performance  could  be  enhanced  ad  infinitum.  Perhaps  the  most  enduring  observation
relating to the limitations of consciousness is from 1965, when Miller suggested the magic number 7 +/- 2”
(Miller 1956). This ‘magic number’ represents the amount of information threads or ‘chunks’ that could be
retained in working memory at any one time.  The theatre metaphor proposed by Baars suggests a spotlight
of selective attention representing consciousness, into which actors move in and out, surrounded by the
darkness of the unconscious, where all the other roles which facilitate the production reside (Baars, 1997). In
Wiggin’s adaption of Baars global workspace theory to a musical context, he asserts that his concern is not
with what consciousness is, but what is presented to it. He presents a model of creative cognition in which
the non-conscious mind comprises a large number of expert generators, performing parallel computations
and competing to have their outputs accepted into the global workspace (Wiggins, 2012). What is not clear
from  this  configuration  is  the  passive/active  nature  of  consciousness  being  stimulated,  is  this  active
conscious engagement or just passive awareness, this distinction is an important one in the context of live
coding and instrumental improvisation because Berliner’s ‘creator – witness’ mode of improvised behavior
rather than the conscious agency needed for live coding (Berliner, 1994).
Another  limitation  that  profoundly  affects  the  performance  of  a  conscious  act  relates  to  its  speed  of
execution. In exploring this it is important to consider the differences between reflexes and reactions. Janet
Chen  Daniel  of  James  Madison  University  explains  some  important  distinctions,  stating  that  only  the
simplest types of responses are generally regarded as ‘reflexes’, those that are always identical and do not
allow conscious intervention, not to be confused by reactions, which are voluntary responses to a sensory
stimulus. There is a long tradition of trying to quantify human performance in terms of speed of execution.
In the nineteenth century one of the pioneers of experimental psychology, the German Wilhelm Wundt,
developed a range of mechanical devices to measure reaction times. Probably the most well known was a
device that became known as ‘Wundt’s complexity clock’. In 1965 German neurophysiologists Kornhuber
and Deecke,  discovered a phenomenon they called ‘readiness potential’  which suggested that the brain
became active anything up to 1.5 seconds before an act was undertaken, in preparation (readiness) for the
act  to  be  performed.  In  the  1970s  Benjamin  Libet,  professor  of  neurophysiology  at  the  University  of
California Medical Center in San Francisco, took this research a stage further. Libet raised the question: if
this time lag exists between preparation and the act, when do we become conscious of the act? It seemed
obvious to him that there wasn’t a ‘one second gap’ between deciding to do something and actually doing it.
In 1979 he set up an experiment using Wilhelm Wundt’s complexity clock to measure the time between the
onset of brain activity, conscious initiation of an act and the actual act. Libet discovered that readiness
potential  started  550ms before  the  act,  while  the subject  became conscious  20ms before  the act.  Libet
concluded that ‘cerebral initiation even of a spontaneous voluntary act of the kind studied here can and
usually does begin unconsciously’ (Libet 1985). From Libet’s findings it became evident that the brain can



process a response to an externally initiated act more efficiently than one that is internally initiated. Our
reactions are therefore quicker than our actions. In both instrumental and live coding performance contexts
a  performer’s  reflexive  and  reactive  behaviour  will  impact  their  musical  output,  but  the  nature  of  its
influence may differ in each circumstance. The majority of live coders tend to perform as solo artists, unlike
improvising  instrumentalists  and  so  for  live  coders  perceptual  processes  monitoring  the  performance
environment  are  more  likely  to  include factors  external  to the  music,  such as  room acoustic,  lighting,
audience reaction etc., alongside anything which may directly affect the substance of the performance. The
time frame in which they codify their musical expression is not necessarily synchronous with musical time
and so the imperative to conceptualise, encode and transmit musical material is relieved of the ‘10 actions
per second’ restriction that Pressing identifies as the limit of improvisational novelty. Instrumentalists are
responsive to subsidiary effects in the performance environment too but also to the behaviour of others
actively taking part in the performance, resulting in behaviour that is likely to be stimulated by perceptual
processes and object memory. In many instances an improvising musician could happily engage in verbal
dialogue with someone while continuing to play their instrument but a live coder would probably struggle
to talk and code at the same time. It therefore seems plausible that live coders require at their disposal, more
cognitive  resource  to  engage  conceptual  processes  and  process  memory,  which  will  tend  to  produce
behaviour that is reactive rather than reflexive. 

4. CONCLUSION
Both instrumental and live coded improvisation exists in a context where there is an expectation that novel
musical material will be produced in a temporal domain that is often referred to as ‘real-time’ or ‘in the
moment’.  In order to achieve this,  instrumental performers have to conceptualise,  encode,  transmit and
evaluate musical  material  in a manner that  is  perceived  as  a  single fluid action.  This action comprises
cognitive processes that are fed by sensory information, implicitly held memories such as motor skills and
more executive conceptual functioning. The seamless action is a fragile parameter space that is susceptible
to  reflexive  responses  and  conscious  and  unconscious  responses  to  internal  and  external  stimuli.  The
performance being undertaken always exists within the context of available cognitive resources and could
be terminated in an instant should the need arise to divert resources to a higher priority undertaking. The
relationship between the temporal aspect of this undertaking and the allocation of cognitive resource differs
significantly for  instrumental and live coded  improvisation. In both instances there is  a need to access
‘technique’ stored as object memory but the encoding process in instrumentalists is much longer and more
systematic and the resulting resource plays a much more significant part of the activity, providing elemental
units of pre-programmed musical behaviour.  An instrumental improviser will dynamically move up and
down a continuum that stretches between perceived conscious control of individual elemental actions and
executive control of pre-programmed units of material. Moving between these modes of engagement is, for
the most part, outside of the performer’s perception. For the live coder the need to maintain the sense of a
single fluid action doesn’t exist. The elemental motor skills required do not have the same relationship with
the production of musical gestures and consequently the evaluation and feedback cycle is not bound to the
same temporal frame. As soon as the ‘real-time’ shackles are loosened the freed up cognitive capacity can be
utilised in musical behaviour that is guided more by compositional considerations derived from process
memory and conceptual processes, with a reduced sense of automaticity, rather than being driven by more
mechanical modes of musical expression. 
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ABSTRACT 

Live coding can be seen to reflect contemporary conditions in which our lives seem to be increasingly 
determined by various scripts and computational processes. It demonstrates the possibility for more 
expansive ideas that emerge in the uncertainties of improvised performance. This paper further situates the 
practice of live coding in the context of artistic research and the notion of ‘onto-epistemology’. One of the 
challenges, it is argued, is to bring code back into the frame of ‘material-discursive’ practice so that code can 
be understood for what it is, how it is produced and what it might become. This is arguably the critical task 
of live coding: to expose the condition of possibility in this way; in other words, to remain attentive to the 
contradictions of what constitutes knowledge in contested fields of practice, and to demonstrate modes of 
uncertainty in what would otherwise seem to be determinate computational processes.  

INTRODUCTION 

Live coding has emerged over the past decade as a dynamic creative force that has gained critical attention 
across cultural and technical fields (Blackwell et al, 2013), but there is little in the way of discussion about its 
critical potential and ability to generate new forms of knowledge. In this short paper, I want to open up this 
line of thinking and situate live coding in the context of artistic research and the inter-relation of 
epistemological and ontological domains.  
 
By invoking the notion of onto-epistemology, I refer to the work of Karen Barad (2007), who combines 
epistemology (the theory of knowing) and ontology (the theory of being) into an ethical framework that she 
calls apparatus. Further developing the concept from the writings of Michel Foucault (Foucault 1980), in her 
conceptualization of apparatus, apparatuses and subject/objects mutually create and define each other. 
Apparatuses are not to be taken to be passive articulations of power/knowledge but instead active and 
“productive of (and part of) phenomena” (Barad 2007: 98). In this sense an argument around live coding can 
be developed that departs from the anthropomorphic tendency to situate the programmer centrally as the 
one who introduces uncertainty (as, for instance, through artistic intention or human error, Cox & McLean 
2013: 63). Instead a position can be developed that takes into account the wider apparatuses in which 
human/nonhuman subjects/objects co-create and together establish uncertain outcomes. In other words, the 
making, doing and becoming of live code, coding and coders are materialized through the inter-action of 
elements.   
 
Of course to try to discuss such complex inter-actions is an impossible task within only a few pages of a 
short conference paper but at least I hope to offer some starting points for further work (not least, to my 
own contribution to the early stages of a multi-authored book project about live coding). Part of the 
intention of this paper is simply to demonstrate the potential of live coding to unsettle some of the various 
power/knowledge regimes through which it circulates as a distinct practice, performance, experimental 
computer music, computational culture, aesthetic expression, and so on. The potential to undermine 
expectations and introduce uncertainty is particularly important, as I hope is obvious, as we are increasingly 
bound to closed and opaque coded systems that do not provide access to any understanding of their inner 
operations, let alone encourage the manipulation of them at the level of writing or reading code, or through 
real-time inter-actions and critical experimentation that examines power/knowledge formations.  
 
One of the challenges then, it can be argued, is to identify code as an integral part of coding practice so that 
it can be understood for what it is, how it is produced and what it might become once it is materialized. This 
is arguably the critical task of live coding: to expose the conditions of possibility; in other words, to remain 



attentive to the uncertainty of what constitutes knowledge in contested fields of practice, and to 
demonstrate these modes of uncertainty in what otherwise would seem to be determinate computational 
processes.  

EMERGENT KNOWLEDGE 

In unsettling some of the assumptions of the institutions of art and the academy, artistic research (or 
research through artistic practice) might also be useful to draw attention to the way that live coding refuses 
to be fixed or foreclosed by a particular knowledge domain (such as computer science, electronic music or 
computer music, even artistic practice). Instead it offers a challenge to some of the assumptions of what 
constitutes knowledge and how it might be articulated in ways where the outcomes are less certain or 
prescribed.   
 
The discussion around artistic research has become fairly well established in general with the proliferation 
of critical writing that addresses non-propositional forms through which knowledge is disseminated in 
order to accommodate artistic modes of thinking and argumentation (Schwab and Borgdorff 2014), but there 
is little as yet that extends to artists working with computational forms and how this extends the discussion. 
The suggestion therefore is that non-traditional methods, such as the live inter-actions of programmer, 
program code and the practice of coding, further expand the range of possibilities for knowledge production 
and question how “various communicative and thinking ‘styles’ guide the flow of knowledge” (Holert 2009: 
8). Decisions are made, enacted and further adapted in real-time and flow transversally.  
 
Artistic research practice can also be seen part of the more general critique of epistemological paradigms 
and the possibilities for alternative forms to reshape what we know and how we know it, and to redefine 
some of the limits of knowledge and what escapes its confines (in the realm of alternative or non-
knowledge). It becomes clear that formal epistemologies are inherently paradoxical and alternative 
paradigms such as live coding understood as artistic research might help to reshape how and what we know 
about how knowledge is produced through reflexive operations and recursive feedback loops. For example, 
Alex McLean’s feedback.pl (2004), a self-modifying live code editor written in Perl, has been oft-cited as an 
example of this potential by establishing how both the programmer and the program are able to edit code 
while it runs in real-time (Yuill 2008; Cox 2011; Cox & McLean 2013). It is the inter-relation of apparatuses 
and subject/objects that create and define each other, and thereby the example demonstrates how neither 
the programmer nor program is able to make finite choices or decisions as such.  
 
This is somewhat like action research, a reflective process of problem-solving, in which the act of writing or 
coding is made active to question what is generated in terms of research outcomes. More than this, live 
coding presents a further challenge to the conventions of research practices in its embrace of uncertainty 
and indeterminacy, including those methods that attempt to incorporate practice as a mode of research to 
destabilize expectations or goal-oriented approaches to research design. This sense of indeterminacy even 
has a mathematical foundation in the recognition of the decision-problem that helps to define the limits of 
computation. According to Alan Turing’s 1936 paper “On Computable Numbers, with an Application to the 
Entscheidungsproblem (Decision Problem),” there are some things that are incapable of computation, 
including problems that are well-defined and understood. Computation contains its own inner paradoxes 
and there is always an undecidable effect in every Turing Complete program however decidable it might 
appear, and it is not logically possible to write a computer program that can reliably distinguish between 
programs that halt and those that loop forever. The decision-problem unsettles certainties about what 
computers are capable of, what they can and cannot do.   
 
Live coding might be considered to be a form of decision-making in this way in which the uncertainty of 
outcomes are made evident through the introduction of further ‘live’ elements and improvised actions 
outside the computer. All decisions are revealed to be contingent and subject to internal and external forces 
that render the performance itself undecidable and the broader apparatus an active part of the performance. 
It becomes clear that research practices, methodologies and infrastructures of all kinds are part of wider 
material-discursive apparatuses through which emergent forms of knowledge is produced and circulated. 
For example, as with all coding practices, the distinction between the writing and the tool with which the 
writing is produced is revealed to be misleading (Cramer 2007), and neither academic writing nor program 
code can be detached from their performance or the way they generate knowledge as part of larger 



apparatuses that create and attempt to define their actions (even when they fail). With the example of 
feedback.pl, the subject/objects relations become confused and it becomes evident that these processes are 
open to further change and modification at all levels of the operation.  
 
Furthermore, live coding, like all coding, is founded on collective knowledge, or what Paolo Virno (after 
Marx) would identity as general intellect as the “know-how on which social productivity relies,” as an 
“attribute of living labour” (2004: 64-5). This know-how refers to the combination of technological expertise 
with social or general knowledge, and recognizes the importance of technology in social organization. This 
is something I have written about previously, to describe how the contemporary linguistic and performative 
character of labour and coding practices combine to produce an uncertain relation between code objects and 
code subjects — between code and coders — the “means-end of code” (Cox 2011). The politics of this extends 
to various communities of socio-technical practice such as the way that source code is distributed and 
shared through the social movements around software (Free Software) and various legal instruments (such 
as Copyleft software licenses). It also extends to the use of code repositories like Git and GitHub that offer 
distributed revision control and source code management, including collaborative working tools such as 
wikis, task management and bug tracking (https://github.com/). Such examples exist as part of a political 
spectrum of ‘just-in-time production’ where performative and improvisational techniques have been put to 
work.  
 
There is an excellent essay by Simon Yuill, “All Problems of Notation will be Solved by the Masses” (using 
Cornelius Cardew’s phrase), that develops similar connections to free software development and 
collaborative practices, including comparison with the improvisation techniques of the Scratch Orchestra in 
the late 1960s: “Livecoding works from within a particular relation between notation and contingency. The 
specificity of code is opened towards the indeterminism of improvisation.” (Yuill 2008) Indeterminacy 
extends to the way that knowledge is produced also through improvisatory techniques, and the discussion 
of artistic practice can be partly characterised in this way as emergent knowledge production in real-time.  
 
If further reference is made to Foucault’s Archaeology of Knowledge (1972), this contingent aspect is already 
well established perhaps in a general way, and thereby what constitutes knowledge is open to question, and 
various strategies have been developed to uncover otherwise undiscovered, in counter-histories, emergent 
knowledge or non-knowledge. Yet, additionally, it becomes necessary to also conceptualize knowledge that 
is less human-centred to include ways of understanding and acting in the world that exceed what is 
normally seeable, audible, readable and knowable. This requires media and not just humans becoming 
“active archaeologists of knowledge,” as Wolfgang Ernst puts it (2011: 239). Thus what is already 
understood as archaeology of knowledge is extended to media archaeology to include what can be made 
knowable beyond the human sensory apparatus in the nondiscursive realm of technical infrastructures and 
apparatuses. Live coding might similarly expand the range of possibilities for alternative epistemologies in 
allowing for discursive and nondiscursive knowledge forms.   
 
The example Ernst gives is Fourier analysis as able to isolate individual components of a compound 
waveform, concentrating them for easier detection or removal. He considers the “operative machine” as able 
to perform a better cultural analysis than the human is capable of (Ernst 2011: 241). Furthermore, with 
reference to Ernst and the concept of microtemporality, Shintaro Miyazaki introduces the concept 
algorhythm to emphasize how the very processes of computation contain epistemic qualities. He explains:  
 
“An algorhythmic study cultivates a close reading of, or to be more accurate, a close listening to the technical 
workings of computers and their networks on precisely this deep level of physical signals. Analysed on 
different scales from the microprogramming on the level of the CPU, or the physical layer of 
communication protocols between server and clients, to interface applications on all levels where human 
interaction is needed, to longer time spans such as the daily backing up of large amounts of data, distributed 
and networked algorhythmic processes can be found on many levels of our current informational networks 
and computational cultures.” (Miyazaki 2012) 
 
The algorhythmic approach offers an epistemic model of a machine that makes time itself logically 
controllable and, while operating, produces measurable effects and rhythms. The practice of live coding – 



and more overtly Algoraves – resonates with these descriptions in drawing together dynamic processes, 
signals, rhythms, temporalities and human bodies coding and dancing.  
 
Part of this line of thinking involves the necessity of developing a fuller understanding of onto-
epistemological operations. Without this know-how, we would simply miss the detail on how various 
effects are produced, how human/nonhuman relations and rhythms operate together, and how codes are 
embedded in wider systems of control and command. In Philosophy of Software, David M. Berry suggests 
that we need to pay more attention to the “computationality of code,” to understand code as “an ontological 
condition for our comportment towards the world” (Berry 2011: 10, 13). If code becomes the object of 
research in this way, its ontological dimension becomes crucially important for the way that code is 
understood as a condition of possibility (Ibid: 28). An onto-epistemology of live coding would therefore 
involve inter-actions of discursive and nondiscursive forms – to challenge how we conceptualize code-being 
and code-becoming. This essay aims to stress this onto-epistemological condition: that code both performs 
and is performed through the practice of coding in real-time. Both mutually create and define each other, 
inter-acting in indeterminate and uncertain ways. 

UNCERTAIN ENDING 

It is with his condition of uncertainty that I would like to end this essay echoing Ernst’s reference to 
stochastic mathematics, related to the theory of probability, to stress that there is an indeterminism between 
human and nonhuman knowledge that comes close to the uncertainty principle (2011). The uncertainty 
principle asserts that no thing has a definite position, a definite trajectory, or a definite momentum, and that 
the more an attempt is made to define an object’s precise position, the less precisely can one say what its 
momentum is (and vice versa). Things are known and unknown at the same time. 
 
Foucault’s notion of apparatus is useful in this way as it allows for an analysis of power/knowledge through 
understanding things to be part of larger relational systems. However Barad extends the conceptualization 
by insisting that apparatuses are “themselves material-discursive phenomena, materializing in intra-action 
with other material-discursive apparatuses” (Barad 2007: 102). To further explain:  
 
“Although Foucault insists that objects (subjects) of knowledge do not preexist but emerge only within 
discursive practices, he does not explicitly analyze the inseparability of apparatuses and the objects 
(subjects). In other words, Foucault does not propose an analogue to the notion of phenomenon or analyze 
its important (ontological as well as epistemological) consequences.” (Barad 2007: 201) 
 
An onto-epistemological reading insists on broader notions of subjects and objects as well as their inter-
actions. This is made clear with respect to how technologies allow for discursive and nondiscursive 
knowledge forms. Again quoting Barad in detail makes this apparent:  
 
“Knowing is not about seeing from above or outside or even seeing from a prosthetically enhanced human 
body. Knowing is a matter of inter-acting. Knowing entails specific practices through which the world is 
differentially articulated and accounted for. In some instances, ‘nonhumans’ (even being without brains) 
emerge as partaking in the world’s active engagement in practices of knowing. […] Knowing entails 
differential responsiveness and accountability as part of a network of performances. Knowing is not a 
bounded or closed practice but an ongoing performance of the world.” (Barad 2007: 149)  
 
Drawing on the new materialism of Barad, and the media archaeology of Ernst and Miyazaki in this essay, 
allows me to assert that it is simply not possible to generate knowledge outside of the material and 
ontological substrate through which it is mediated. Thus the inter-relation of epistemology and the 
ontological dimension of the materials, technologies, things, code and bodies is established as active and 
constitutive parts of meaning-making. Live coding offers a useful paradigm in which to establish how the 
know-how of code is exposed in order to more fully understand the experience of the power-knowledge 
systems we are part of, and to offer a broader understanding of the cultural dynamics of computational 
culture as an apparatus, or set of apparatuses, with ontological as well as epistemological consequences. 
 
Live coding can be seen to reflect contemporary conditions in which our work and lives seem to be 
increasingly determined by computational processes. More expansive conceptions and forms that emerge in 



the uncertainties of performance become part of the critical task for live coding: to expose the conditions of 
possibility, to remain attentive to the contradictions of what constitutes knowledge and meaning. An onto-
epistemology of live coding thus offers the chance to engage with the inner and outer dynamics of 
computational culture that resonates in the interplay of human and nonhuman forces. It helps to establish 
uncertainty against the apparent determinism of computation and how we think we know what we know. 
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ABSTRACT

Approximate programming is a novel approach to live coding that augments traditional programming methods with
methods of generating and editing code through realtime numerical processes, using an underlying system that employs
representations and transformations from gene expression programming. It aims to provide a hybrid environment where
code can be created and modified expressively with multiparametric controllers, and well as with conventional text
editing tools. It does this while aiming to keep the code as the central point of representation in the system. Two
case studies are presented where the system has been used in live performance for musical improvisation and then for
generative audiovisualisation. Initial trials of the system highlight its strengths as an embodied method for control of
complex code structures, and as a novel method for combining low-level conceptual structures into higher-level forms.
e case studies show two key limitations of the system, with challenges in comprehension of the final code output in
text form, and difficulties arising from the highly nonlinear nature of the input-output mappings. Initials solutions are
presented in the form of a GUI system for interacting with code in tree representation form.

1. Introduction

Approximate programming is a novel approach to interacting with code in creative soware systems. It merges tech-
niques from live coding, gene expression programming (Ferreira 2001), multiparametric control (Kiefer 2012) and param-
eter space exploration (Dahlstedt 2009). Code is generated in realtime through a transformation of an array of numbers
analogous to a gene in evolutionary programming systems. is gene can be created by a musical controller, allowing
the player to interact with code though gesture and motion capture. e gene can also be drawn from other data sources,
for example from realtime music information retrieval systems, allowing code to be generated from any computational
process.

e system aempts to bring expressive bodily gesture into the process of interacting with code, as an augmentation
to the conventional coding editing interfaces typically used for live coding. It aims to do this while preserving code as
the primary focus of the system, to harness the flexibility of code, which increasing the involvement of the body in its
creation. e system is named approximate programming because the results for a particular gesture or gene are, at least
initially, unknown, although the broad domain may be predictable based on knowledge of the gene-to-code mappings.
e system is primarily exploratory, although exploration transitions towards repeatable performance as the search space
is mapped out by the player.

e development of this technique was motivated by a desire to find ways to express code responsively in ‘musical’
time. Further details of the background to this project are given in (Kiefer 2014). e author has used the system in
performance in two different contexts: for musical performance, and as an autonomous engine for audiovisualisation.
Both of these contexts are presented here as case studies of the development of approximate programming techniques.
Following this, the strengths and pitfalls of approximate programming are discussed, along with the development of new
extensions to address the key limitations of the system.

2. Context

iswork is rooted in the field genetic programming (GP) (Poli, Langdon, andMcPhee 2008), andmore closely to a variant
of GP, gene expression programming (Ferreira 2001), taking the idea of expressing code as a transformation of a vector
of numbers and using this vector to explore a large non-linear space of possibilities through a mapping of the gene to a
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tree representation of the code. e similarities however end with the use of this representation, as evolutionary search
techniques are not used in approximate programming. Instead, the space of possibilities is explored in realtime, as the
player navigates through the parameter space. e search space can be re-modelled, expanded or restricted by changing
the set of component functions on which the transformation draws. is process places the technique as a hybrid of
a parametric space exploration system (Dahlstedt 2009, ⁇?) and interactive evolution (Dorin 2001), where a human is
at the centre of the search process. Within the field of live coding, approximate programming overlaps with several
other projects and pieces. Ixi Lang (Magnusson 2011) has a self-coding feature, where the system runs an agent that
automatically writes its own code. D0kt0r0’s Daemon.sc piece (Ogbourn 2014) uses a system that generates and edits
code to accompany a guitar improvisation. [Sisesta Pealkiri] (Knos and Allik 2013) use a hybrid of gene expression
programming and live coding for sound synthesis and visualisation. McLean et al. (2010) explore the visualisation of
code; this is a theme that has emerged as an important issue in approximate programming, where code changes quickly,
and robust visualisation techniques are required to aid comprehension by the programmer.

3. Approximate Programming

Approximate programming takes two inputs: a numeric vector (the gene) and an array of component functions. It
outputs the code for a function built from the component functions, according to the content of the gene. It is embedded
within a system that compiles and runs each newly generated function, and seamlessly swaps it with the previously
running function as part of a realtime performance or composition system. It should be noted that the use of the term
gene here does not imply that an evolutionary search process is used to evolve code, but this term is still used because of
the relevance of other genetic program concepts. e component functions are typically low level procedures, including
basic mathematical operations, but may also include larger procedures that represent more complex higher level concepts.
e algorithm works as follows:

create an empty list of nodes that contain numerical constants, P

choose a component function, C, based on the first element in the gene

find out how many arguments C has

while there are enough gene values left to encode C and its arguments

create a new tree node to represent this function

use the next values in the gene as parameters for the function

add the parameters as leaf nodes of the new tree

add the parameter nodes to the list P

if the tree is empty

add this new tree at the root

else

use the next gene value as an index to choose a node containing a function parameter from P

replace this parameter node with the new tree

remove the parameter node from P

choose a new component function, C, using the next gene value as an index

find out how many arguments C has

Broadly, the algorithm builds a larger function from the component functions by taking constant parameters in the
tree and replacing them with parameterised component functions. A SuperCollider implementation of this algorithm is
available at hps://github.com/chriskiefer/ApproximateProgramming_SC.

4. Case Studies

4.1. Case Study 1: Musical Improvisation with SuperCollider and a Gestural Controller

e first use of this system was for a live musical performance. e system was built in SuperCollider. During the
performance, the component functions were live coded, while the genewasmanipulated using amultiparametric gestural
controller. is controller output a vector of 48 floating point numbers, at around 25Hz, and these vectors were used as
genes to generate code. is is an example of some component functions:

~nodes[\add] = {|a,b| (a+b).wrap(-1,1)}



~nodes[\mul] = {|a,b| (a*b).wrap(-1,1)}

~nodes[\sin] = {|x,y| SinOsc.ar(x.linexp(-1,1,20,20000), y)}

~nodes[\pulse] = {|x,y,z| Pulse.ar(x.linexp(-1,1,20,20000),y, z.linlin(-1,1,0.2,1))}

~nodes[\pwarp] = {|a| Warp1.ar(1,~buf2, Lag.ar(a,10), 1, 0.05, -1, 2, 0, 4)}

~nodes[\imp] = {|a| Impulse.ar(a.linlin(-1,1,0.2,10))}

~nodes[\imp2] = {|a| Impulse.ar(a.linlin(-1,1,3,50))}

is example shows a range of functions from low level numerical operations to higher level functionswithmore complex
unit generators. ese functions could be added and removed from a list of the current functions that the system was
using to generate code. e system generated code that was compiled into a SuperCollider SynthDef. Each new Synth
was run on the server and crossfaded over the previous Synth. An example of the generated code is as follows:

~nodes[\add].(

~nodes[\pulse].(

~dc.(0.39973097527027 ),

~nodes[\pulse].(

~nodes[\pwarp].(

~nodes[\pwarp].(

~dc.(0.6711485221982 ))),

~nodes[\pwarp].(

~nodes[\mul].(

~dc.(0.6784074794054 ),

~nodes[\saw].(

~dc.(0.999 ),

~dc.(0.999 )))),

~dc.(0.5935110193491 )),

~dc.(0.39973097527027 )),

~dc.(0.38517681777477 ))

4.2. Case Study 2: Generative Audiovisualisations from Realtime MIR Data

A new version of the approximate coding system was developed to create openGL shaders, using GLSL shading language.
is system worked in a very similar way to the SuperCollider system; a set of components functions was present in
the source of each shader, and a larger scale function was generated from a gene, consisting of calls to these component
functions. Visuall, the system took a functional rendering approach; it created pixel shaders, which took a screen position
as input and output the colour value for that position. e intention of this system was to create audiovisualisations, and
audio was used as input to the approximate coding system in two ways. Firstly, the gene was generated from sections
of audio; every bar, an analysis was carried out to generate a new gene from the previous bar of audio. e intention
was that similar bars of audio should generate similar visual output, and various combinations of audio features were
experimented with for this purpose. Secondly, an MFCC analyser processed the realtime audio stream and streamed its
feature vector to the fragment shader; component functions in the approximate coding system drew on this data, so the
resulting pixel shader reacted to the textures in the realtime audio stream. e systemwas fine tuned with a preset library
of component functions, and then used for a live performance where it autonomously generated the audiovisualisation.
e system was built using OpenFrameworks.

4.3. Discussion

ese two case studies complement each other well as they explore the system in two very different use cases. is
demonstrates the flexibility of approximate programming, and also highlights limitations of the system that need to be
addressed.

To begin with, I will explore the benefits of using this system. e principle gain from this system is the ability to explore
relatively complex algorithms in a very intuitive, bodily way, in stark contrast to the cerebral approach that would be
required to generate the same code manually. Furthermore, the process of search and exploration places the program-
mer/players sensory experience at the forefront of the process, and externalises rather than internalises the creative
process. Live coding the component functions provides a mid-point between these two poles, linking programming
and sensory exploration. e component functions are interesting as they represent low-level concepts in the search



Figure 1: Screenshots of the Audiovisualiser

space that are transformed and combined into a higher-level concepts in the output. For example, in the sound synthe-
sis version of the system, if sine wave generators, adders and multipliers are provided as components functions, an FM
synthesis type output will be obtained. If impulse generators are added, then rhythmic outputs start to appear. In the
graphical version, there is a clear mapping between low-level numerical operations and visual features that appear in
the outputs, for example sine generators create circular forms, and euclidean distance functions create colour gradients.
e dynamics of programming components and exploring them creates an interesting potential for content creation and
performative exploration of complex multi-dimensional search spaces. To further this, the code paradigm is preserved
throughout the process, and the performer can examine the resultant code output as part of the exploration. is makes
the system transparent to the user, and very malleable as the results are reusable and recyclable.

ere are two key limitations of the system that need to be addressed, concerning nonlinearity of the search space and
interaction with the code. In case study 1, the resultant code from the approximate programming system was projected
to the audience, and was displayed on the computer used for the performance to be used as part of the navigation process.
e code was laid out as in the example above, but without colour coding. It was the intention to use this code as part
of the reference to exploring the search space, in keeping with the design of the system which places the code form at
the forefront of the system. e code however moved very fast (in this case this was partially due to the instability of
the controller being used), and without visual augmentations it was difficult to comprehend at the speed it was being
presented. It would be ideal if this code could be used as a significant part of the approximate programming process,
and so visual augmentations to the output code are a key priority to address. e second issue was most apparent
in the audiovisual system, and concerns the nonlinearity of the search space. e intention of the audiovisual system
was to generate code based on analysis of sections of music in such a way that similar sections would generate similar
audiovisualisations. is worked sometimes, but because of the nonlinearity of the transformation between gene and
phenotype, oen similar bars would create very different audiovisualisations, implying that the search landscape is far
from smooth. Exploring methods for smoothing out this landscape is the second key issue to address with this system,
and the most challenging one. Aempts towards addressing the first challenge of increasing engagement with the system
output are now presented.

5. Engaging with the Outputs of Approximate Programming

Two new augmentations to the approximate programming system will now be described, that aim to increase potential
for engagement with the code output both visually and interactively.

5.1. Visual Augmentations

e original presentation of code output by the system was difficult to comprehend - although it had some basic format-
ting, there were few visual aids, and fast changes were challenging to follow. Showing this output as text was perhaps
one step to far in visualising the output, and this new augmentation rewinds the process to the tree representation of the
code, before it’s converted to text. e logic of the code is still present in this form, but without the trappings of textual
syntax it’s possible to present a logical process in a simpler way that aids comprehension by the performer. Furthermore,
the system at the moment does not have a facility for tracking direct edits to the code output, so there isn’t a strong case
for viewing it as text anyway.



e new system presents the code tree graphically, as shown in figure 2. It uses two features to enhance comprehension.
Firstly, numbers have a dual representation, as text and as a colour mapping on the background of their text box. is
allows an easy overview of parameter values. Secondly, significant nonlinearities in the search space are caused when
a function placeholder changes to point to a different component function. It’s helpful to the player to know when this
might happen, so function identifiers are also colour coded; when their underlying numerical value is siing between
two functions, they appear grey. As their underlying value moves in either direction towards a boundary where the
function will change, the background is increasingly mixed with red. is gives an indication of when the code is in a
more linear state, and also indicates when it’s approaching a significant change.

Figure 2: A visualisation of the code tree

e tree in figure 2 corresponds to the code below:

~nodes[\verb].(

~nodes[\pulse].(

~nodes[\saw].(

~nodes[\imp].(

~dc.(0.37286621814966 )),

~dc.(0.38956306421757 )),

~dc.(0.27969442659616 ),

~nodes[\imp].(

~dc.(0.39397183853388 ))),

~dc.(0.67538032865524 ),

~nodes[\saw].(

~nodes[\imp].(

~dc.(0.39397183853388 )),

~nodes[\imp].(

~dc.(0.38752757656574 ))),

~dc.(0.58867131757736 ))

5.2. Interacting with the Code Tree

Further to aids for visual comprehension of code, the code tree presents an opportunity for the programmer to further
interact with the system. A new feature was added augment the code tree through mouse interaction together with
gestural control. It works as follows:

• e player chooses a point on the code tree with the mouse that they would like to change.

• ey also choose the size of the gene they will use for this change.

• When they click on the node, a new sub-tree is spliced into the main code tree. Now, all editing changes this
sub-tree only, and the rest of the tree is kept constant.

e player can use this system to slowly build up code trees, with either fine-grained or coarse adjustments.



5.3. Discussion

e new augmentations clarify code representation, and allow new interactions that give the player more refined control
over the system if this is desired. Within this new framework, there’s plenty of room to explore new ways to combine
code editing from multiple points of interaction: text editing, GUI controls, physical controllers and from computational
presses. is new part of the system is work-in-progress, and it currently under evaluation by the author in composition
and live performance scenarios.

6. Conclusion

A new approximate programming system has been presented, which aims to create a hybrid environment for live cod-
ing which combines traditional code editing, embodied physical control, GUI style interaction and open connections to
realtime computational processes. It has been explored in two case studies, one that used the system for musical impro-
visation in SuperCollider, and one that ran autonomously creating audiovisualisations using GLSL. e two case studies
show that the system, from the authors perspective, has particular strength in enabling embodied control of code, and
in augmenting live coding with gestural control. ere are two key limitations of the system; challenges in reading and
interacting with the final code output that it creates, and the non-linearity of the search space. is paper offers initial
solutions to enabling higher quality engagement with code outputs, by presenting the code tree graphically instead of
presenting the code in textual form. A further augmentation allows the player to use a GUI to select and edit sections of
the tree. ese augmentations are currently under evaluation, and future work will explore this area further, along with
methods for managing nonlinearity in the search space.

Overall, this project has plenty of research potential in interface design, audio and visual synthesis and performance
aesthetics. e author intends to make a future public release to gather more data on how musicians and visual artists
would use this type of technology.
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ABSTRACT

Spreadsheets are the most popular live programming environments, but they are also notoriously fault-prone. One
reason for this is that users actively rely on copy-paste to make up for the lack of abstraction mechanisms. Adding
abstraction however, introduces indirection and thus cognitive distance. In this paper we propose an alternative: copy-
paste tracking. Tracking copies that spreadsheet users make, allows them to directly edit copy-pasted formulas, but
instead of changing only a single instance, the changes will be propagated to all formulas copied from the same source.
As a result, spreadsheet users will enjoy the benefits of abstraction without its drawbacks.

1. Introduction

Spreadsheet systems can easily be considered the most successful form of programming. Winston (Winston 2001) esti-
mates that 90% of all analysts in industry perform calculations in spreadsheets. Spreadsheet users perform a range of
diverse tasks with spreadsheets, from inventory administration to educational applications and from scientific modeling
to financial systems. e financial business is a domain where spreadsheets are especially prevailing. Panko (Panko
2006) estimates that 95% of U.S. firms, and 80% in Europe, use spreadsheets in some form for financial reporting.

Researchers have argued that the liveness characteristics of spreadsheets have contributed to the widespread success of
spreadsheets (Hermans 2013) and we know from interviews with users that liveness is important to them. ey oen
start building a spreadsheet with the end goal in mind, and manipulate the formulas until they obtain the result they
want.

e liveness characteristics of spreadsheets can be divided in two categories:

• Direct manipulation: instead of editing a separate plan or program to achieve some result, the spreadsheet user
edits the “thing itsel”: there is almost no distinction between the actual data and the “code” of a spreadsheet. is
feature addresses the “gulf of execution” which exists between the user’s goal, and the steps that are required to
achieve that goal (Norman 1986).

• Immediate feedback: aer a change to the spreadsheet data or formulas, the user can immediately observe the
effect of the edit. is feature bridges the “gulf of evaluation” which exists between performing an action and
receiving feedback on the success of that action (Norman 1986).

Despite these aractive features for end-users, spreadsheets are well-known to be extremely fault-prone (Panko 2006).
ere are numerous horror stories known in which organizations lost money or credibility because of spreadsheet mis-
takes. TransAlta for example lost US $24 Million in 2003 because of a copy-paste error in a spreadsheet (Pryor). More
recently, the Federal Reserve made a copy-paste error in their consumer credit statement which, although they did not
make an official statement about the impact, could have led to a difference of US $4 billion (Durden). ese stories, while
single instances of copy-paste problems in spreadsheets do, give credibility to the hypothesis that copy-paste errors in
spreadsheets can greatly impact spreadsheet quality.

is copy-pasting as in the stories above is not always done by mistake. Rather, we see spreadsheet users using copy-
pasting as a deliberate technique. is is understandable, as standard spreadsheets do not support any form of data
schema or meta model, so there is no way in which a new worksheet in a spreadsheet could inherit or reuse the model of
an existing worksheet. Copy-paste is then oen used to compensate for for the lack of code abstractions (Hermans et al.
2013). Finally, when faced with spreadsheets they do not know, users are oen afraid to modify existing formulas, thus

mailto:f.f.j.hermans@tudelft.nl
mailto:storm@cwi.nl


copy-paste them and add new functionality (Hermans et al. 2013) creating many versions of similar formulas, of which
the origin can no longer be determined.

Existing research improving spreadsheets has focused on extending spreadsheets with abstraction mechanisms. An
example of this is the work of Engels et al. , who have developed a system called ClassSheets (Engels and Erwig 2005)
with which the structure of a spreadsheet can be described separately. e actual spreadsheet can then be guaranteed to
conform to the meta description. Another direction is enriching spreadsheets with user-defined functions (UDFs) (Jones,
Blackwell, and Burne 2003). In this case, spreadsheets users can factor out common computations into separate cells,
and refer to them from elsewhere in the spreadsheet.

Although these features improve the reliability of spreadsheet use, they have one important drawback, namely, that they
break the “direct manipulation” aspect of spreadsheets. In a sense, separate meta models, or user defined abstractions,
create distance between the actual user’s artifact (data + formulas), and its computational behaviour. Instead of just
looking at the cells, the user now has to inspect at least two places: the cells containing the data and the separate
definitions of the abstractions (meta model or user defined functions).

In this paper we propose XanaSheet, a spreadsheet system that features an alternative method to manage abstraction,
without diminishing directness. XanaSheet employs origin tracking techniques to maintain a live connection between
source and destination of copy-paste actions. Whenever a copied formula is edited, the modifications are transformed
and replayed on the original and all other copies. Instead of introducing another level of indirection using abstraction,
XanaSheet allows users to edit classes of formulas, all at once. In a sense, the abstraction, or user defined function, is
there, but it never becomes explicit. By retaining ease of use, this technique has the potential to eliminate a large class
of copy-paste errors, without compromising the direct manipulation aspect that make spreadsheets so aractive.

2. Copy-Paste Traing in Action

Figure 1: Maintaining consistency among clones of formulas through copy-paste tracking

Figure 1 shows an example user interaction with a spreadsheet containing student grades. In the first step the sheet
contains just the Lab and Exam grades of three students, and a formula for computing the average of the two grades in
D2. In the second step, the formula in cell D2 is copied to D3 and D4. D3 and D4 are clones of D2, and this relation is
maintained by the system as an origin relation (visualized using the arrow). In the third step, the clone in D4 is modified
to apply rounding to the computed average. Unlike in normal spreadsheets, however, this is not the end of the story and
XanaSheet will reconcile the original formula of D2 and the other clone in D3 with the changes in D4.

A way to understand what is happening here, is to see spreadsheet formulas as materialized or unfolded abstractions.
e abstraction in Fig. 1 is function average(x,y) for computing the average of two grades. In ordinary program-
ming such a function could, for instance, be mapped over a list of pairs of grades to obtain a list of averages, like
map(average, zip(Lab, Exam)). In the spreadsheet of Fig. 1, however, the abstraction average does not really exist, but
is represented collectively by the set of all its inlined applications, e.g. [(Lab[0]+Exam[0])/ 2, (Lab[1]+Exam[1])/2,



(Lab[2]+Exam[2])/2]. In a sense, each application is a clone of the same implicit prototype, with parameters filled in
with concrete data references. e tracking relation induced by copy-paste actions, identifies which clones belong to the
same equivalence class. erefore, editing one clone triggers updating the clones which belong to the same class.

In some cases it might actually not be desired to maintain the origin links between source and destination of copy-paste
actions. XanaSheet supports these situations by providing a special “Paste and Detach” action which severs the copy
from its original (similar to “Past and Match Style” common in many text editing systems). e example also assumes
that when a user edits a formula she always intends to edit the whole class of clones. However, the system allows the
user to edit only this copy, or all copies at once (similar to changing “Recurring events” in calendar applications).

3. Semantics of Copy-Paste Traing

e previous section introduced copy-paste tracking from the perspective of the user. In this section we describe our
considerations regarding the implementation. We have implemented an executable semantics of copy-paste tracking
for simulating interactive editing sessions with a spreadsheet. e code can be found online here: https://github.com/
Felienne/LiveSpreadsheets/tree/master/XanaSheet. We are currently working on an interactive prototype of XanaSheet.

A spreadsheet is a rectangular grid of cells where each cell is identified by its address, which are pairs An consisting
of a column leer A and a row index n. User actions always operate on one of more of these addresses. e origin
relation between cells is then modeled as a binary relation between such addresses. For instance, the relation Org =
{⟨D3, D2⟩, ⟨D4, D2⟩} captures the origin relation visualized in Figure 1 (2). In this case, the relation states that the
formulas in cell D3 and cell D4 are copied from cell D2.

Without loss of generality we assume users only use relative cell referencing in formulas. at is, a cell reference consists
of relative row and column offsets starting from the current cell (Sesto 2006). For instance, the reference to B2 in Fig.
1 (1) is a relative cell reference, is represented as C-2R0 (“two columns le, same row”). Relative cell referencing allows
formulas to be moved around across the grid without having to adjust explicit column names or row indices.

Interacting with the spreadsheet not only updates the sheet itself, but also maintains the origin relation. We describe the
effect of the most relevant edit operations on a cell c:

• Entering a formula: If c does not participate in any origin relation, it is is simply updated with the new formula,
and the origin relation is updated with ⟨c, c⟩ to model the fact that a new formula is its own origin. As a result,
the origin relation is always reflexively closed. Otherwise, c has an origin, say c′, and the cells that need to be
updated are {c′′ | ⟨c′′, c′⟩ ∈ Org}. By definition, this includes cell c, and, by reflexivity of Org, the source cell c′
as well. .

• Copying cell c to c′: e contents of c is copied to c′. If the contents is a formula, the origin relation needs to be
updated as well. First, if c′ has an existing origin, the corresponding pair is removed from the relation. en the
relation is extended based on the current copy operation: if c has an origin c′′, add ⟨c′, c′′⟩, else add ⟨c′, c⟩. e
check for the origin of c ensures that the origin relation is always transitively closed.

• Inserting/removing a row or column: aer updating the sheet, the origin relation is adjusted so that cell addresses
refer to their new locations. For instance, when inserting a row at position i, the row components of all the cell
addresses on rows ≥ i in the origin relation needs to be shied one down. In the case of removal, all pairs in the
origin relation that contain coordinates on the removed row or column are removed.

• Entering data: cell c is updated with the new data. All pairs containing c, either as source or target, are removed
from the origin relation.

Note that copying a cell c to c′ removes the origin entries of c′ (if any). An alternative design could interpret copying
a formula as a modification of the destination cell, and thus update all cells in the class of c′. In that case all such cells
would get c as their new origin.

Although in this section we have just discussed copy-paste tracking for formulas, the same model can be applied equally
well to copy-pasting of data. In that case, the origin relation helps against inadvertently duplicating input data. An
interesting special case is the “paste as value” operation. Instead of copying a formula, this operation copies the com-
puted value, thus completely disconnecting the destination cell from its source. Tracking such copy-paste actions would
probably not be very useful: editing the pasted value would incur computing the inverse of the original formula, and
updating the input data accordingly!
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4. Related Work

Copy-paste tracking is a simple technique that is inspired by similar concepts in domains as diverse as term rewriting,
hypertext, clone detection, prototypical inheritance , and view maintenance. Below we briefly summarize representative
related work in those areas.

Origin tracking: Copy-paste tracking is directly inspired by origin tracking (Deursen, Klint, and Tip 1993). In general, ori-
gin tracking tries to establish a relation between the input and output of some computational process, such as a compiler,
or program transformation. Origin tracking, however, has numerous other applications in visualization, debugging, and
traceability. An application most similar to our work is presented in (Inostroza, Storm, and Erdweg 2014), where origin
tracking is used to implement editable regions on generated code.

Transclusion: Ted Nelson’s concept of transclusion (Nelson 1965) is a form of “reference by inclusion” where transcluded
data is presented through a “live” view: whenever the transcluded content is updated, the views are updated as well.
Our origin relation provides a similar hyper-linking between cells. But unlike in the case of transclusion, the relation
is bidirectional: changes to the original are propagated forward, but changes to copies (references) are also propagated
backwards (and then forwards again). A similar concept is used in Subtext, where copying is the primary mechanism for
abstraction (Edwards 2005).

Clone tracking in soware: Godfrey and Tu (Godfrey and Tu 2002) proposed a method called origin analysis which is a
related to both clone detection and the above described origin tracking, but aims at deciding if a program entity was newly
introduced or whether it if it should more accurately be viewed as a renamed, moved, or otherwise changed version of
an previously existing entity. is laid the ground for a tool called CloneTracker that “can automatically track clones as
the code evolves, notify developers of modifications to clone regions, and support simultaneous editing of clone regions.”
(Duala-Ekoko and Robillard 2007).

Prototype-based inheritance: Lieberman introduced prototypes to implement shared behaviour in object-oriented pro-
gramming (Lieberman 1986). In prototype-based languages, objects are created by cloning and existing object. e
cloned object then inherits features (methods, slots) from its prototype. e parent relation between objects is similar to
our origin relation. However, we are not aware of any related work using this relation to propagate changes to clones
back to their parents.

Bidirectional transformation: one way to look at copy-paste tracking is to see copies as views on the original formula
similar to views in database systems. In particular, the copies are updateable views (Bancilhon and Spyratos 1981). Dif-
ferent manifestations of the view update problem have received considerable aention recently in the context of lenses
(J. N. Foster et al. 2007) and bidirectional transformation (Czarnecki et al. 2009). In the context of user interfaces these
concepts were pioneered by Meertens under the header of “constraint maintenance” (Meertens 1998). In a certain sense,
copy-paste tracking supports a very basic class of constraint maintenance where clones are simply synchronized to be
equal.

5. Conclusion

Spreadsheet systems are the most popular live programming environments. ey adhere to the powerful direct manipu-
lation style of simultaneously editing data and code. Nevertheless, spreadsheets are known to be extremely fault-prone,
mainly because users have to use copy-paste instead of user defined abstractions. Existing research has tried to improve
spreadsheets by introducing abstractions such as meta models or user defined functions, but this compromises the direct
manipulation aspect that makes spreadsheets so aractive in the first place.

In this paper we propose XanaSheet: copy-paste tracking as way to both have our cake and eat it too. Instead of in-
troducing another level of indirection, copy-paste tracking supports editing classes of formulas originating at the same
source, all at once. As a result, we get the benefits of abstraction (reuse, sharing, “single-point-of-change”), without the
incurring the burden of cognitive distance.

Outlook Duplication of knowledge is ubiquitous is computing. Copy-paste tracking can be generalized to a broader scope
by seeing it as an example of abstractions that are presented to the user in a materialized, expanded, unrolled, referenced,
or instantiated state. e relation between such views and the original is oen many-to-one and the views are oen
read only. Copy-paste tracking could provide a model to make such user views of abstractions editable. us, copy-
paste tracking in its most general form supports direct manipulation in interactive systems and allows users to maintain
abstractions through their multiple concretizations. We conclude by providing a tentative list of examples where similar
ideas could be applied:



“Copy” (many) “Source” (one)

Reference Declaration
Stack frame Procedure call
Inlining Procedure
Text output Template
Object Class
Styled element Style sheet
Denormalized view Normalized database
Unrolling Loop
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Abstract 
Drawing on my experience as a critical interlocutor within the Weaving Codes, Coding Weaves project (2014 
— 2016, http://kairotic.org/), in this paper I propose potential points of connection between Ancient weaving 
and live coding, considering both practices through the prism of the Ancient Greek concept of technē, a 
species of tactical knowledge combining the principles of mêtis (cunning intelligence) and kairos (opportune 
timing). Specifically, this enquiry addresses the human qualities of attention, cognitive agility and tactical 
intelligence activated within both live coding and live weaving, arguing that such practices might have 
potential as ‘practices of the self’, as a means for cultivating a more critical mode of human agency and 
subjectivity.  
 
This paper elaborates ideas emerging from my experience as respondent/interlocutor within the current 
research project Weaving Codes, Coding Weaves (2014 — 2016), which is an interdisciplinary collaboration 
(funded by an UK Arts and Humanities Research Council Digital Transformations Amplification Award). 
Led by principle investigators Ellen Harlizius-Klück and Alex McLean (alongside collaborative developer 
Dave Griffiths and co-investigator Kia Ng), Weaving Codes, Coding Weaves explores the historical and 
theoretical points of resonance between the practice of weaving and computer programming. My own role 
— as interlocutor — addresses the insights gained if we bring these activities together, identifying and 
elaborating possible ways in which the practices of live coding and ancient weaving might connect, 
somehow interweave. I approach the project through the prism of my own practice as a writer-artist with a 
background in Fine Art but without specialist knowledge or expertise related to either weaving or coding. 
Rather than tackling the research area from the perspective of a specific discipline (weaving or coding) and 
the technical preoccupations associated therein, my approach is one of attending to what is “inter”. “Inter” 
— a contingent state of being between, betwixt, amongst, in the midst of. “Inter” signals towards what is 
produced during, emerging from within. The term also refers to the act of being put to ground, the condition 
of a body buried. Here, ‘burying oneself’ (myself) might describe the state of being immersed or embedded 
in a particular situation or site, working from the interior.  
 
My embedded involvement in Weaving Codes, Coding Weaves echoes and develops the interlocutory role I 
performed in a previous research project (led by co-investigators Alex McLean and Hester Reeve) entitled 
Live Notation: Transforming Matters of Performance, also funded within the UK Arts and Humanities 
Research Council Digital Transformations theme, for exploring the possibilities of relating live 
coding (performing with programming languages) and live art (performing with actions). My response to 
that project was an article entitled, Live Notation: Reflections on a Kairotic Practice (Cocker 2013), where I 
elaborated an idea of ‘live notation’ (within both live art and live coding) as a contemporary manifestation 
of the Ancient Greek concept of technē, a species of knowledge combining the principles of mêtis (cunning 
intelligence) and kairos (opportune timing). Through the new research undertaken as part of the Weaving 
Codes, Coding Weaves project, I extend this enquiry in order to address how the practice of live coding and 
ancient loom weaving might also be considered through the prism of technē, with its attendant principles of 
wiliness and timeliness.  
 
Still in its emergent research phase, in this paper I reflect on points of potential connection between live 
coding and ancient loom weaving, paying particular attention to the principles of Penelopean mêtis and the 
weaver-coder’s kairos operating therein. It is perhaps useful to stress that the current phase of research is 
still in progress and as such this paper offers a conceptual proposition, which will be further ‘fleshed out’ 
through closer attention to the material technicalities of both live coding and ancient weaving as the 
Weaving Codes, Coding Weaves project evolves. Additionally, I am collaborating with Geoff Cox and Alan 



Blackwell on the development of Live Coding Alternatives, a live coding workshop (as part of Critical 
Alternatives, 5th Dicennial Aarhus Conference, August 2015) for testing and exploring live coding as a 
creative, aesthetic and potentially political practice for constructing ‘critical alternatives’ within both 
computing and everyday life. I approach these contexts — as well as the International Conference on Live 
Coding (ICLC) itself — as live sites for testing and developing a proposition, for inviting further dialogue 
with the live coding community rather than presenting my argument as a fait accompli. 
 
It is also perhaps also useful to situate this specific enquiry ‘Live Coding/Weaving — Penelopean Mêtis and 
the Weaver-Coder’s Kairos’ against the context of a broader investigation within my research activity, 
focused on identifying contemporary manifestations of technē (especially within artistic practice — and with 
an interest in drawing in particular), and in advocating how the particular qualities, capacities and 
knowledges produced therein might have a critical, perhaps even resistant potential (Cocker 2010). Within 
this ongoing investigation, I address how a more augmented, affective expression of human agency and 
subjectivity might be cultivated through the activation of technē, through attending to and nurturing the 
principles of mêtis (cunning intelligence) and kairos (opportune timing) within both creative practice and 
daily life. Here, technē is not used in its habitual sense, where it is taken to simply mean the skillful art of 
making and doing, the technical facility of craftsmanship. Whilst retaining the idea of technē as a means of 
making/doing, my intent is to explore how Ancient Greek weaving and philosophy might intertwine with 
live coding on both technical and conceptual levels. Making a return to how the term was used within 
Ancient Greek culture, I refer to technē as a disruptive — even subversive — species of tactical knowledge, 
capable of dealing with contingent situations and fully harnessing their capricious force (for example, a 
knowledge capable of seeing and seizing the potential of chance, randomness and indeterminacy and 
converting this towards unexpected direction). As Janet Atwill argues “Because technē defined itself in 
terms of intervention and invention, it is concerned solely with situations that yield indeterminacies that 
would allow one to discern the opportune moment and to ‘seize the advantage’” (Atwill 1998, 70 — 71). This 
intimates towards the rather unexpected aspect of technē, for it is not a practice intent on stabilizing or 
limiting the contingency of unstable or indeterminate forces (nor resisting their pressures), but rather on 
the transformation of their force towards opportunity. For Atwill technē “challenges those forces and limits 
with its power to discover (heuriskein) and invent new paths (poroi)”; it “deforms limits into new paths in 
order to reach — or better yet, to produce — an alternative destination” (Atwill 1998: 69).   
 
My assertion is that there are certain contemporary, creative processes (for example, live coding, as well as 
forms drawing, performance and indeed weaving) that display the properties of technē, that require a 
specific quality of alertness or attentiveness to the live circumstances or ‘occasionality’ of their own 
production, moreover, that these qualities (identified and practiced) have the capacity to be applied to other 
situations, indeed to the living of a life. In this sense, my own research investigation might be conceived in 
relation to Michel Foucault’s late work on Ancient Greek ethics and the ‘care of the self’, his analysis of the 
various ‘techniques of life’, ‘arts of existence’ or ‘practices of the self’ through which it might be possible to 
‘make life a work of art’, a material capable of being made malleable, transformed through practice (Foucault 
1997,1992/1984, 2001). For the Ancient Greeks, the training and cultivation of technē was central to the 
construction of both self and civic life, the capacity of invention, intervention and conceptualizing of critical 
alternatives. Indeed, the Greeks developed a complex interlocking system of preparatory training and 
reflexive exercises (or askēsis) for testing mind and body, the convergence of athletics and rhetoric for 
exercising language as well as limbs (Hawhee 2004). My current enquiry asks — what are the human 
capabilities and capacities (related to mêtis and kairos) cultivated through the practice of live weaving and 
live coding; indeed, how might weaving and coding be practiced as askēsis, as potential practices of the self? 
 
The connections between live coding and ancient weaving that I seek to excavate are less directly to do with 
the shared technology (the relation between the computer and the loom), nor shared notational systems 
(pattern and code) or mathematical algorithms, nor even the relationship or resonance between the 
resulting weaves (whether digital or textile). My focus is more on the capacities, knowledges and qualities of 
attention activated “inter”, emerging in between the disciplinary lines, moreover, through the relation or 
negotiation between human and machine; through the live and embodied process of decision-making 
involved in both weaving and coding which conventional notational systems seem arguably unable to fully 
account for. What ‘lost’ or buried connections between coding and weaving emerge through disrupting or 
dislodging the position of the Jacquard loom in the historical development and conceptualization of these 



practices? What knowledges or capacities become lost or devalued through the privileging of speed, 
productivity, economic efficiency and standardization that technological developments such as the Jacquard 
loom facilitate? How might these knowledges and capacities be recuperated or retrieved? Indeed, certain 
technologies actively create the conditions of ignorance or alienation, where a technology has the capacity 
to be used or operated in the absence of any knowledge of underpinning process, principles or structure. In 
doing so perhaps, what becomes cultivated is a reliance on templates, on a received standard or model 
developed for a specific (predetermined) purpose or function. The possibility of deviation from the norm, for 
bespoke options, for modification or adaptation becomes problematized, increasingly less of an option. In 
time, the capacity to imagine other ways of doing things might dissolve or dissipate; possibilities conform to 
the standard fit, the path of least resistance. Here perhaps, it is possible to argue how the acceptance of 
standards or templates alongside ignorance of underpinning structures and causes within one context, 
facilitates the same in other aspects of lived experience. Or else perhaps, more affirmatively, can the 
questioning of standards or templates alongside increasing awareness of underpinning structures and 
causes within one context facilitate the same in other aspects of life? The revelation and live reworking of 
digital code through the performance of live coding involves showing and sharing the unfolding logic of a 
language so instrumental to contemporary life, but in which few are fluent. Learn the language of the 
operator (the programmer or code-writer) or be forever subject to another’s code. “Program or be 
programmed”, (Rushkoff 2010); code or be coded; write or be written; weave or be woven.  
 
The live coding and ancient weaving practices that I have encountered within the Weaving Codes, Coding 
Weaves project invite a more complex, nuanced or even entangled human/machine relation, where 
technology is not so much put to use as worked with, the process unfolding through attending to — even 
collaborating with — the resistance exerted by the technology or apparatus rather than conceiving it simply 
as a tool that needs to be brought under control, mastered. Creating the right tension — a process of 
improvisatory working emerges through cultivating an understanding of tolerance, how far something can 
be pushed or pressured before it breaks, indeed, when to instill breaks or rests. Gilles Deleuze names the 
power to affect other forces — spontaneity, and to be affected by others — receptivity (Deleuze 1999: 60). 
Somewhere between spontaneity and receptivity, somewhere between control and letting go, somewhere 
between affecting and being affected. Rather than giving over responsibility to the inevitability of a rule’s 
logic, within live coding and live weaving practices the coder-weaver consciously adopts a medial position, 
actively maintaining the conditions that will keep the unfolding of action dynamic. Debra Hawhee 
conceptualizes the medial position of “invention-in-the-middle” as a kairotic movement involving 
“simultaneous extending outwards and folding back”; it is a “space-time that marks the emergence of a pro-
visional ‘subject’, one that works on and is worked on by — the situation” (Hawhee 2002: 18). Medial. I think 
of the helmsman steering the boat, navigating the competing pressures and forces of the water and the 
wind, or else the artist-pencil drawing. Loom like boat like laptop — each an extension of human capacity, 
embodied prosthesis. Within these various practices (weaving, coding, drawing, indeed sailing), where does 
the capacity of body end and prosthesis/apparatus begin? Both live coding and ancient weaving foreground 
understanding of process and structure, refusing or even undoing the logic of a given, accepted model or 
concept in order for it to be reworked or modified. Yet, the mode for understanding process is not based 
wholly on abstraction as such or taken as a given, rather cultivated through use and experiment, through 
trial and error, by doing something as a way of knowing how something is done, moreover, for knowing 
how it might be changed, swerved, taken in a different direction. Or rather, understanding is cultivated 
through the oscillation or even ‘shuttling’ between ‘discontinuous’ systems of abstract notation and the 
‘continuous’ experience of a lived process. What are the cognitive and bodily intelligences operating in this 
space between the discontinuous and continuous, between the abstract and the lived?  
 
For the Ancient Greeks, the term mêtis described a form of wily intelligence capable of seizing the 
opportunities (kairos) made momentarily visible as the prevailing logic within a given structure or system 
yields. Mêtis is the art of preparing for what could not have been anticipated or planned for in advance; it 
the same skill used in catching the force of the wind or the turn of the tide, which as Marcel Detienne and 
Jean-Pierre Vernant note is “as prompt as the opportunity that it must seize on the wing, not allowing it to 
pass” (1991/1978: 15). Harnessing the properties of dexterity, sureness of eye and sharp-wittedness, mêtis 
“attempts to reach its desired goal by feeling its way and guessing”; it is a “type of cognition which is alien 
to truth and quite separate from episteme, knowledge” (Detienne and Vernant 1991/1978: 4). Reflecting on its 
role within Ancient Greek rhetoric, Detienne and Vernant describe mêtis as, “a type of intelligence and of 



thought, a way of knowing; it implies a complex but very coherent body of mental attitudes and intellectual 
behaviour which combine flair, wisdom, forethought, subtlety of mind, deception, resourcefulness, 
vigilance, opportunism […] It is applied to situations which are transient, shifting, disconcerting, and 
ambiguous, situations which do not lend themselves to precise measurement, exact calculation or rigorous 
logic” (Detienne and Vernant 1991/1978: 3 — 4). Knowledge through experiment might take the form of 
doing and undoing, the repeated labour of trying something out, over and over, again and again; tacit 
knowledge cultivated through the accumulation of tests and attempts. Here, repetition might be undertaken 
less towards the perfection of a given move or manoeuvre but rather towards the building of confidence and 
capacity. A working knowledge of a process or material such that it becomes ingrained in mind and muscle, 
activated at the fingertips and in the process of thinking en acte, live and emergent to the situation rather 
than pre-planned in advance. In these terms then, it could be argued that the nature of the knowledge is less 
of a tacit kind or of a ‘know how’, but rather a form of knowing closer to the “immanent intensification” of 
thinking which philosopher Alain Badiou (following Nietzsche) asserts “is not effectuated anywhere else 
than where it is given — thought is effective in situ, it is what … is intensified upon itself, or again, it is the 
movement of its own intensity” (Badiou, 2005 58 — 9). A tactical knowledge performed through receptivity 
to the possibility of what remains unknown, open to the unfolding situation. Not a knowledge that is easily 
banked and transferable, but rather acquired through practice, moreover, activated only in-and-through 
practice.  
 
To improvise within a given structure requires skillfulness and attention, a capacity for biding one’s time 
and knowing when and how to act. Here then, rules or instructions are not to be diligently followed but 
rather have the capacity to be modified or adapted even while they are being executed, the tension of an 
unfolding thread of weave or code varied as it is being woven/written, or else undone and rewoven, 
enabling the possibility of a change of tack. For live coders including the collective slub (Dave Griffiths, Alex 
McLean and Adrian Ward) “the preferred option for live coding is that of interpreted scripting languages, 
giving an immediate code and run aesthetic” (Collins et al. 2003: 321). Here, audiences encounter projected 
code as a running command line whilst it is being modified and rewritten by the programmer and in some 
specific instances by the code or interpreting system itself. Cox notes, within certain live coding practices 
the, “running code is also able to edit its own source code … That these self-modifications happen directly to 
the code being edited in real time puts the code visibly on the same level as the programmer” (Cox 2013: 61). 
The live running code makes manifest a developing logic based on the principles of what if, through the 
testing of the possibility of this or this or this or this. What then, is the specificity of thinking-in-action 
activated whilst improvising within a live running code, and how might it relate to working on the loom? 
Indeed, the means through which the same result is arrived can create different kinds of knowledge, 
different human capacities. 
 
Rather than through the unfolding of trial and error — the generative testing of this or this or this — 
knowledge might be acquired through the inversion of a given process. Here, undoing comes first: reverse 
engineering of a weave or code necessary for seeing the underpinning structure, not only the surface 
pattern. This capacity for differentiating the pattern from the structure has an implicit political imperative 
or application, cultivating the ability to discern an essential sameness within certain options offered, for 
recognizing that certain choices are effectively cut from the same cloth. An active undoing then for 
knowing how something works or is structured, for seeing beyond the surface of things. Acts of 
appropriation, hacking and backtracking as a means of taking back control, no rather for resisting control, 
for reasserting the potential for creative improvisation within a seemingly standardized process, for 
recuperating human agency within systems whose options seem increasingly closed, prohibitive. A form of 
“creative consumption” (Michel de Certeau 1984) or the cultivation of a “minor language or practice” 
(Deleuze and Guattari 1986) wherein the prescribed ‘codes’ and patterns of the dominant culture are 
appropriated (hacked), modified or inverted (creatively reverse-engineered), and then redirected towards 
other (often less utilitarian) ends. Here then, existing patterns, rules and codes are not to be taken as given 
(as fixed or unchangeable) but rather appropriated as a found material with which to work, rework. The 
process of coding or weaving in these terms is not conceived as an algorithmic operation whose logic is 
simply imported, set in motion and allowed to run its course; rather both have the capacity to be unraveled 
and rewritten as events unfold. Not so much the Beckettian “fail again, fail better” model (Beckett 1999: 7) — 
a doing and undoing for reflecting a relation between utility and futility — but rather an affirmative and 
resistant practice. 



 
Doing and undoing, undoing and re-doing: performed as a mode of deviation or subversion, of purposefully 
non-productive labour. I am reminded of Penelope, wily weaver of Ancient myth, wife of Odysseus in 
Homer’s Odyssey — weaving by day and unweaving by night, willfully unraveling the weave such that by 
morning the task might begin afresh. Hers is the act of unweaving and reweaving to avoid the completion 
of a task, for refusing the teleology of outcome or commodity, the production of a product and its 
consequences. This might be seen in the writing of certain live coders, who rather than working towards 
some teleological endpoint, might even attempt to begin and end with nothing. For Penelope — the stakes of 
whose weaving were indeed quite high — the practice of unweaving and reweaving was performed as an act 
of quiet resistance, so as to thwart the terms of a situation from which there would seem to be no way out. 
For the contemporary live coder, might not the Penelopean logic of doing and undoing, or even undoing 
and then redoing, also be harnessed as an act of ‘minor resistance’, conceived as an attempt to thwart or 
subvert capture by capital, refusing the terms of easy assimilation. Here, code is woven only to be 
unraveled, or else the emphasis is process-oriented, code remaining only as a trace or residue of live action, 
for making tangible the process of decision-making.  
 
Whilst the remains of code from a live performance enables the capacity for something to be repeated again 
or reworked, it would appear that both live coding / live weaving are somehow less about approaching the 
situation with ‘a code prepared in advance’, but rather have to be practiced as a practice. Weaving and 
unweaving of both code and thread as an open-ended process, not so much concerned with the production 
of product as experience. Yet, what other meanings and capacities — if not products — might be produced 
therein? I think of Luce Irigaray when she says, “one must listen differently in order to hear an other 
meaning which is constantly in the process of weaving itself, at the same time ceaselessly embracing words 
and yet casting them off to avoid becoming fixed immobilised” (Irigaray 1980: 103). What kinds of 
performativity, what politics, what philosophies, what poetics emerge therein? For Barbara Clayton, the 
Penelopean poetics of weaving and unweaving are generative, where “undoing does not signify loss or 
nullity, but rather life affirming renewal and the constant possibility of new beginnings” (Clayton 2004: 124) 
Not the repetitive practice of sameness then, but rather one of attending to difference, to the potential 
twists, variations and permutations of the thread or code. Here, a ‘doing-undoing-redoing’ perhaps akin to 
the Deleuzian conceptualization of a plier/déplier/replier, where the act of folding, unfolding and refolding 
“no longer simply means tension-release, contraction-dilation, but enveloping-developing, involution-
evolution” (Deleuze 2006: 9). Or else the practice of undoing might be undertaken in order to create the 
conditions for doing over and again, repetition as a means of embodied and affective knowledge production, 
the knowledge that comes from a process practiced, cultivation of the art of knowing when as much as how.  
 
Repetition of a process as training or as exercise, askēsis even? Askēsis: preparatory training and reflexive 
exercises connected to the cultivation of technē. Could live coding and indeed live weaving be conceived as 
askēsis for practicing or testing the art of timing or of timeliness, the capacity for responding to the new 
situation as it unfolds, attending to the gaps and deciding how to act. In one sense, both live coding and 
weaving can be considered kairotic practices based on the principles of intervention and invention-in-the-
middle. Kairos is an Ancient Greek term meaning an opportune or fleeting moment whose potential must be 
grasped before it passes. It describes a qualitatively different mode of time to that of linear or chronological 
time (chronos). It is not an abstract measure of time passing but of time ready to be seized, an expression of 
timeliness, a critical juncture or ‘right time’ where something could happen. Kairos has origins in two 
different sources: archery, where as Eric Charles White notes, it describes “an opening or ‘opportunity’ or, 
more precisely, a long tunnel like aperture through which the archer’s arrow has to pass”, and weaving 
where there is “a ‘critical time’ when the weaver must draw the yarn through a gap that momentarily opens 
in the warp of the cloth being woven” (White 1987: 13). In kairotic terms, the importance of weaving is 
reiterated — as both a practice and also as a metaphor for articulating a particular quality of thinking-in-
action (perhaps even ‘loom thinking’) (Jefferies 2001). A seizing of opportunity based on cunning 
intelligence and propitious timing, on the kairotic art of knowing when as much as where and how.  
 
Yet, the opportunity of kairos has little power on its own; it requires the perceptions and actions of an 
individual capable of seizing its potential. As Debra Hawhee states, “kairos entails the twin abilities to notice 
and respond with both mind and body … the capacity for discerning kairos … depends on a ready, 
perceptive body” (Hawhee 2004: 71). For White, kairos involves a “will-to-invent” or form of improvisation, 



that necessitates “adaption to an always mutating situation. Understood as a principle of invention … kairos 
counsels thought to act always, as it were, on the spur of the moment” (White 1987: 13) or perhaps in live 
coding terms through a process of coding “on the fly”. As Nick Collins et al note, live coders “work with 
programming languages, building their own custom software, tweaking or writing the programs themselves 
as they perform” (Collins et al. 2003:1). Code is written as it is performed; a practice often referred to as 
‘coding on the fly’ or ‘just-in-time coding’ (or what I would propositionally name ‘kairotic coding’). White 
states, “Kairos stands for a radical principle of occasionality which implies a conception of the production of 
meaning in language as a process of continuous adjustment to and creation of the present occasion” (White 
1987:14 — 15). Based on the twin principles of mêtis and kairos, Ancient technē affords an alternative 
epistemological framework for addressing key questions of live-ness and dexterity critical to live coding as a 
practice. 
 
A practice based on timing and timeliness, emerging between the principle of biding one’s time and 
knowing when to act. The weaver-coder navigates a course of action by intuiting when to yield to the rule 
or code or even the technology itself and when to reassert control, by knowing when to respond and when 
to interrupt. Yet within the logic of technē, opportunities are produced rather than awaited. It is a practice or 
art deemed capable of setting up the conditions wherein kairos (the time of opportunity) might arise and in 
knowing (through a form of mêtis or intuitive intelligence) how and when to act in response. Kairos 
involves the making of the situation at the same time as deciding how to act. A gap is made in the weave at 
the same time as deciding how (and when) to shuttle the thread through. A language is generated 
simultaneous to its use. A live and present practice: the live toggling back and forth of the cursor and the 
shuttle, decisions made from inside the weave, from within the continuity of a process (a running code) 
rather than applied by as a process of design from without. A kairotic practice is not one of planning in 
advance or designing from a distance. There is no concealment of preparation, no cuts to be made after the 
fact — all is visible, all part of the work. The back and the front of a process are indivisible; moreover, the 
polar logic of self and technology, discontinuous and continuous process, hidden and visible becomes 
blurred. Preparation becomes folded into the practice itself, is part of (and not prior to) the process. 
Moreover, each action has the capacity to create the conditions or scaffolding for the next; what is at first 
the weft will later become the warp. Perhaps it is in this sense that such practices might be considered 
askēsis or training exercises, the principles cultivated therein — of one action setting up the conditions for 
the next — expanded as a ‘practice of the self’, life as a work of art practiced as the warp and weft of an 
unfolding code/weave. In this sense, my paper addresses the relation between ancient weaving and live 
coding through the prism of technē, a form of practical knowledge combining principles of opportune 
timing (the weaver-coder’s kairos) and cunning intelligence (a specifically Penelopean metis), in order to ask 
more speculatively, ‘how might live coding and live weaving be imagined as pragmatic technologies of the 
self and society for twenty-first century life’? 
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ABSTRACT
In this article, I will analyse live coding technique under the magnifying lens of Ethnography. Using this
perspective, I will try to delve into three main aspects: the effect on the audience/performer interaction of
the screen projection during performances; the relationship between “hacker’s ethic”, borrowing a Pekka
Himanen’s definition, and live coders community; how some researchers are trying to establish contacts
between  formal  and  informal  music  milieu.  In  my view,  an  Ethnographical  approach  can  help  people
interested  in  live  coding  to  contextualise  some  implication  of  this  technique’s  internal  dynamics.
Additionally, this perspective can be useful to build a bridge between some academic and non-academic
computer music contexts, using live coding as glue between them.   

1. INTRODUCTION
A new tendency in Ethnomusicology is to include, among interesting experiences to document and analyse,
not  only the so-called  traditional  or  folk  music  but  also  emergent  contemporary  music  practices.  Live
coding is,  without  doubts,  among these last  ones.  Many researchers  think that is  useful  to deepen the
knowledge of contemporary cultural phenomena to increase the understanding of present social processes
and dynamics since their inception. The debate on this is still ongoing, though.
In the case of live coding, I think that an Ethnographic recognition made by the newest techniques can be
very fruitful, because it appears to be a cross-practice music experience involving many different cultural
contexts.  Either the artist/audience interaction or the effect of screen displaying or,  finally,  the cultural
milieu that lay underneath, may be interesting for understanding many social dynamics. 
Then, in this article, I will explain the ongoing research I am carrying out for my PhD, trying to summarise
the main concepts emerged during my inquiry both through “traditional” ethnological field documentation,
through reading written documents  and through the newest  technique called “netnography” that I  will
explain better beneath.

2. LIVE CODING: A BRIEF DESCRIPTION
Live  coding is  an improvisatory  artistic  technique.  It  can  be  employed  in many different  performative
contexts: dance, music, moving images and even weaving. I have concentrated my attention on the music
side, which seems to be the most prominent. For playing with this technique, the performer have to use a
dedicated software platform and a programming language to send, in real time, the music instructions to the
machine. There are many live coding music programs and interfaces, but, with few exceptions, all of them
are characterised by a central role of the text for managing the sound result. In fact, the computer software,
for  reproducing sounds,  interprets  the text  typed  in the program’s  window.  The performer  express  his
virtuosity  through  high  speed  typing of  complex  instructions  with  the  right  grammar.  Sometimes  the
musician can type program lines to see what happens, without having then a full control on the process.
Therefore, there is a will of producing an indeterminate music results on a certain degree. This happens
probably because we assist to an exploratory phase and the performer is aware that he/she cannot control
the whole machine processes and in this way, it is possible to find some interesting but unpredictable music
solutions.
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There are also some other kinds of musical interfaces, as wearables or external devices, but all produce an
alphanumerical result on the screen. Thus, text seems to be the main musical referent of this technique.
The musical material employed during events can be retrieved either from the performer's computer archive
or  it  can be created from scratch,  by using various  techniques  as,  for  example,  additive or  subtractive
synthesis, filtering and so on. Computer is not utilised as a “traditional” musical instrument, with a cause
and effect connection between the performer actions and the sound heard. Musicians put their musical
thoughts in a written form during programming and then the computer software translates the code in
sounds when every line is launched. 
Live coding in music is practically a pure “instrumental” practice. With this term, I would point out the fact
that in all the performances I have attended to and I have read about, there were not singers1. Nevertheless,
live coded shows employ human voice samples, treating them in the same way of other musical material. In
some cases, the human body carries out an active role during live coding performances. For example, there
can  be  dancers,  performers  of  different  types  of  instruments  or  wearable  electronic  devices  that  track
movements and other body features to transform them in data inputs. 
Live coding concerts can take different forms. A constant, however, is that every performer shows, normally
through a video projector, his or her computer screen to the public. This action bring the attendees inside
the music making and in every single moment, they are aware of what is happening on the musician’s
computer. They do this for a matter of transparency: live coders do not wish to hide their musical actions
because they feel themselves to be performers and they want that the public perceive clearly this. They do
not want to be seen as someone simply standing behind a screen leaving the audience unaware of what he
or she is  doing. During many computer music performances,  the artists may be suspected  of  checking
emails or chatting with someone instead of playing, while the computer reproduces the music heard by the
audience.  Live coders  think that with screen projection it  is  clear that they are playing and not doing
something else. This act of transparency has probably something in common with conceptions coming from
the world of popular music, where, during the last decades, authenticity, sincerity and transparency have
become highly valued features (Auslander2008).  The commitment in the art  and the effort to obtain an
“authentic” product and an “authentic” performance is typical, in particular, of underground popular music
movements,  less  interested  than  mayor  labels,  at  least  in  principles,  in  increasing  their  revenues
exponentially. However, the need of authenticity from the listeners is becoming more and more urgent for
pop stars too. See for example the Ashlee Simpson’s lip-syncing scandal on Saturday Night Live, happened a
few years ago, ended in some online petitions for convincing her to quit her career.
Quite underground as well, almost since the recent explosion of Android devices, is the so called “hacker's
culture”, into which I believe that live coding can be included. I am using the term “hacker” to address the
meaning given to this word by Pekka Himanen in his book The Hacker Ethics and the Spirit of Information
Age (Himanen2003). Hacker’s community is multifaceted but everyone share some basic principles. One of
the most important is that a good society has to be free and based on communities of pairs. A community
works better and faster than a single alone in developing complex structures. The most famous example of
this approach is Linux, the free Operative System par exellence. We should not interpret here the word “free”
in economic terms. It is not a matter of cost but instead one of freedom. The code, in the hacker’s view has
to  remain  accessible;  everyone  should  have  the  choice  of  accessing  and  modifying  the  code  freely
(Stallman2010). It seems that this belief is valid among live coders as well. Hence, there are also hackers who
accept  the  employment  of  this  working  approach  even  in  ICT  companies  for  capitalistic  purposes
(Levy1984)2. As just hinted, live coders seem to adhere more to the hacker’s movement branch, where it is
important to share knowledge on equal  basis, without requesting economic return for this,  to give out
intellectual products and let whoever wants to use and modify them freely. Another important aspect for
hackers, as well as for live coders, is, finally, to build a community of passionate users devoted to the cause,
whose feedbacks and suggestions contribute greatly to the developing of software. All the previous aspects
are present in the live coding community. In fact, music programs are released under open source licence
and the most famous program, Supercollider, is developed in a way similar to that of Linux. Moreover, there

1 There are some rare cases of live coding coupled with human voice sung in real time, as for example Miko
Rex or Silicon Bake. 
2 See also this interesting essay on hacker’s culture based on Levy1984 but also on some other books on this
subject (in Italian): http://www.altrodiritto.unifi.it/ricerche/devianza/tavassi/cap1.htm
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are some online forums, as toplap.org or livecoderesearchnetwork.com, where the community exchanges
opinions and informs all the people interested in live coding on the group’s activities.
On the live concert hand, it seems that there is not a live coding ideal context. In fact, live coding shows can
take  place  almost  everywhere,  from nightclubs to concert  halls.  This happens  because  live coding is  a
performative technique and not a proper music practice. Then, musicians can produce many different music
forms, timbres and dynamics characteristic of diverse kinds of musical manifestation by employing it. 
There are probably some connections between the software's structure and the music produced with that.
For example, Threnoscope program is more suitable to produce long and droning sounds and Tidal, Gibber,
Sonic Pi, etc., instead, are more likely to be used in a collective event called algorave or, generally, in music
contexts that request a bodily reception. However, it is possible to produce drones or long sound with Tidal
or Gibber, but their constraints do not help in doing this. Threnoscope has a double sided interface: one
circular that represent an ideal sonic round space where the sound is spatialised via multichannel sound
system, and one based on text where the performer types the program lines that represent the instructions
for sound reproduction. Considering that this program needs a complex sound system for expressing its
complete creative power, it is more likely to be used in academic contexts, where music with similar needs
is often staged. The Tidal or Gibber case is different, because their authors designed those simples, flexibles
and able to manage sounds very quickly. Their interfaces has a unique window where performers write the
program lines. The light interface and the intuitive syntax enable them to implement parameters with ease.
In fact, these programs are utilised to reproduce more or less complex rhythmic patterns and melodies, and
to modify both in an extremely rapid way. In the most part of performances I have attended to, the sound
result was under many aspects similar to those of dance and techno music: stratified structures, repetitive
beat patterns, high level of sound reproduction and so on. Thanks to these similarities, the programs are
widely used in events called, as already mentioned, algorave. A rave is a music party based on concepts as
that of freedom, equality, anticapitalism and, in general, extremely libertarian principles (Hakim2007). Such
principles resonate also in the live coding community, even though with less extreme connotations and
outcomes. In this article, unfortunately, there is no room to think about the relationship between live coding
and rave culture extensively. 
The most important software in live coding field, however, appears to be Supercollider, which has the most
wide music possibilities. In fact, many different programs borrow many features from that as, for example,
programming language, architecture and design. This program is divided in two parts: one visible to the
musician (SClang) and one invisible (SCserver). This last one is the machine that interprets in real time the
instructions coming from the first one (the proper interface) and transforms them in sound. SCserver can be
managed  by  using some other  custom designed  interfaces.  In  fact,  many live  coders  use  this  piece  of
software through another program, which interact and exploit different SCserver features. 

3. SOME REFLECTIONS ON LIVE CODING MUSIC PRACTICE
That was a brief, though not complete, description of some of the most important aspects of live coding
performances. Probably now is time to reflect about implications of musical and performative actions taken
inside  this  music  community.  However,  before  to  begin  the  proper  analysis,  I  would  briefly introduce
Ethnography, the inquiry method employed here.
Ethnography  is  characterised  by  three  main  rules:  1)  direct  observation  and  description  of  the  social
practices, 2) the research perspective is that of the researcher, that is partial, 3) this perspective is “full of
theory” or, in other words, the researcher has a cultural baggage that influences his or her inquiry results.
Many techniques can be employed during an Ethnographic research. The most important in my research are
the participative observation and the so-called netnography. 
The first one entail a direct researcher participation in the cultural activities of a precise social group, for a
sufficiently long period, going directly “on site”.  Ethnographer should establish a direct interaction with
group’s members to be able to understand and describe the purpose of people’s actions in that particular
context.  In that way,  knowledge is  built  through a process  of  identification by the researcher with the
group’s members (Corbetta1999). All this techniques are employed to obtain, firstly, an interpretation and
description of a society from the inside, using the same words and the same concepts of “natives”. Then, it



enable the “natives” to be conscious of their “tacit knowledge”: the embodied knowledge that people is not
aware to own because they feel it as something natural. Finally, the researcher’s role should be emphasised
because what he or she will tell depends on how he or she has conducted the field research. 
The second technique to describe, Netnography, arise after spreading of Web 2.0. This term’s father is the
sociologist and marketing researcher Robert Kozinets (Kozinets2009), who coined it to define a qualitative
research3 conducted  on  the  “online”  field.  This  technique  enable  the  researcher  to  collect  important
behaviour information from the spontaneous chat of online users. The original aim of Netnography was to
understand the consumers’ mood about commercial products, brands, prices and so on. With these insights,
the marketing agency can construct personalised advertisement campaigns but sociologist too can extract
important information on social interactions. Netnography has developed a scientific methodology to select
useful data from the mass of online messages exchanged inside webtribes. A webtribe is simply a group of
people, active on the social media, which speak about specific topics and creating a community around it.
Netnographers employ non-intrusive and natural survey techniques, to limit the researcher’s interference
with the normal field dynamics, letting the people to exchange opinions and evaluate products freely. Only
in  this  way,  researchers  can  have  a  faithful  representation  of  people  thoughts.  These  thoughts,  in
Netnography,  undergone an interpretative  analysis  to extract  from them both commercial  and cultural
insights.  Commercial  insights  represent  the  people’s  sentiment  about  a  particular  topic,  how members
employ a product and, finally, suggestions and complaints about something. Cultural insides include instead
the study of “tribal culture” and “tribal ethics”: the first is how webtribe members represent themselves and
how they see the world around; the second address the shared values among community members. 
Although this technique has been developed for market research purpose, in my opinion it can be useful
also to understand the live coding community members’ online activities because live coders as well is a
webtribe grown around a “product” (the technique of live coding) that exchange opinions, evaluate, struggle
to modify “the market” to match their needing. 
Coming back to performance analysis, the most innovative aspect introduced by live coding, in my opinion,
is the computer screen projection during concerts. This act has a clear scope: let the audience become aware
that they are witnessing a live performance and not a fiction or an acousmatic concert. Some funny actions
undertaken by performers, as asking through the screen questions to the audience, contribute crucially to
construct this liveness effect. For example, Alex McLean has asked for a beer during his performance at the
Lambda Sonic in Ghent,  Belgium, typing his request on the computer screen and, consequently,  on the
projected image of his screen on the club’s wall. After a little while, the beer arrived brought by an audience
member4. This weird request express the performer need not only for a beer during his show, but also, most
importantly,  for  audience  involvement  on  a  different  and  unusual  level.  This  appears  to  be  a  clear
experiment of breaking the invisible wall between performer and listener during concerts. However, the
main aim of screen projection is to show to those present the development of performer’s music thoughts in
form of written algorithms and sound. Additionally, this entails that the musicians exposes themselves to
the risks of every live performance. In most computer music concerts, the audience cannot be sure about the
event's  nature  they  are  witnessing  to,  because  calculator  is  not  an  acoustic  music  instrument,  but
acousmatic  and potentially automatic.  By “acousmatic”,  I  mean a context in which the sound source is
impossible to recognise by direct visualisation (Schaeffer1966). In the computer music case, the audio output
is the product of electric currents’ oscillation managed by software. Then the actual sound source is invisible
and, especially in the computer case, the sound may be automatically driven. 
A computer music concert may be compared, in some cases, to a sort of public records listening, with a
marginal power of the musician on the sound output. In some other cases instead, the musician has a more
important role,  but what he or she is doing, is not evident and so it is barely distinguishable from the
previous one on the visual aspect.  What makes the difference between live coding and other computer
music performances is that every live coder gives a proof of his or her crucial role as “event conductor”. The
screen is the place where sounds take shape. Showing the ongoing music process is something comparable
to play an acoustic instrument: the music making process becomes transparent and people in front of the

3 A qualitative research use a definite group of research techniques for collecting precise information about
a specific and limited case of study. A quantitative research, on the contrary, aims at collecting big amount
of data on a wide research field and  analyse them though the tool of statistics and mathematical models
(Ronzon2008).
4 See the performance’s video here: https://www.youtube.com/watch?v=DmTuQcTTORw



performer do not feel betrayed or cheated, but involved into the sound production. Performances can take
place also via the internet, but this does not seem to influence the audience’s liveness perception. It can be
inferred that the public perceive the screen as the performer’s real time representation, the performer’s
simulacrum. An example of this happened in Birmingham at the Network Music Festival. It was a telematic
performance between three musicians. They interacted with each other on an online server and, through an
Internet connection, they broadcasted the sound result in the concert hall. The audience, in attending at this
performance, laughed at jokes, stayed silent during music “playing” and finally applauded as if they were in
presence of the performer flesh and blood. This example confirms that in live coding concerts the attendees’
centre of attention is the screen. 
Therefore,  it  is  evident  that  the  performer  has  a  crucial  and  active  role  in  live  coding  performances.
Nevertheless, as hinted above, it seems that musician's body tends to become less and less important, at
least where the only sound production device is the computer. The listeners’ attention is more focused on
the screen, or better, on the screen's projection. This light beam appears to be the real music referent in this
context and in fact, it has often the most prominent position in the performative space. People are attracted
more from flashing projected images coming from computer than from the musicians themselves, because
the screen conveys all the musical information that the performer cannot provide. This is also confirmed by
the audience reaction when the concert is telematic. Apparently, the musician absence does not damage
liveness perception. The interaction between performers on the server’s chat window and with the audience
confirm and reinforce this sensation.  
All  these statements seems to remain true even though the performative space changes and the music
practice switches from a more rhythmic and informal context to a more static, reflexive and formal one. In
fact, in performances like those made, for example, through Threnoscope or those taken by BEER ensemble,
where audience members are not stimulated to move all their bodies following the music rhythm, the screen
polarise the listener’s attention probably on a higher degree. For example, during the performance held at
Escola de Música do Conservatório Nacional in Lisbon by Thor Magnusson and Miguel Mira, my attention
was attracted by actions represented on the screen projection and by those played by the cellist, who was
very theatrical. In the same way, at algoraves my attention was polarised by the display’s evolving images
and not very much by the musician. The screen becomes a body extension, a medium of communication in
itself and not only an interface. So, in the end, this action tends to eclipse the rest of musician’s body. This is
confirmed by, as I have already said, concerts played via the internet. Here musicians are somewhere else,
but their screen is projected in front of us and becomes the only music referent.
Therefore, the screen projection is, in my opinion, the most important innovation introduced by live coding
movement in computer music practice. However, there are at least another three important aspects to cite
and analyse briefly. 
The first one is that live coding has transformed the act of programming in an artistic performance. In fact,
it seems to be one of the first experiences of transporting the software writing activity, which was until then
a process of texting made before the real computer “action”, in the real time domain. The verb “program”
derives from Antique Greek  prò-gramma,  which means literally «to write before». Then, it is an action
taken before the real event. With live coding is possible instead to introduce programming in many “on-the-
fly” activities as music performances, but also many others. To become a widespread technique, it needs
time to develop as science, to refine procedures and dedicated software. 
Another important  innovation is  the introduction of hacker’s  ethic in music.  I  would like to introduce
briefly what I mean with the word “hacker”. First, I would like to state that people who define themselves
hackers are not informatics criminals as widely implied by popular mass media. They are called crackers
(crack + hacker). The term hacker addressed, at the beginning of computer era, a passionate person who
likes to deepen the understanding of something by opening and exploring it directly, with his or her hands,
and share this knowledge with other people to improve the community work. Only later, the hackers have
started  to  switch  their  interest  on  computers.  Even  nowadays,  the  word  “hack”  alone  address  to  an
intelligent trick developed thanks to the deep knowledge of something. 
During the movement’s inception in the 1950, the first hackers coined the ruling principles of the group:
passion, sense of community among members, desire to deepen personal knowledge and to share it with
other  group’s  members.  (Levy1984).  However,  the  community  has  changed  with  the  technology
developments.  The computer has become an increasingly profitable business and this opened a fracture
inside  the  movement.  Some  hackers  tried  to  reconcile  the  aspect  of  gratuity,  freedom  and  sharing



characteristic of the past, with that of business, causing some inevitable imbalances (privacy especially), and
some  others  who  remained  faithful  to  the  past  principles.  The two most  famous  hackers,  Richard  M.
Stallman and Eric S.  Raymond, represent two main tendencies in the community.  The first  is  the most
faithful to the original hacker’s principles and he is a champion of activism for freedom of knowledge, users’
privacy protection and community building5. The second is more right-wing libertarian and, even though he
recognises hacker’s ethic principles worth to be followed,  he is less convinced about the importance of
activism and more flexible about the basic principles’ interpretation. He is also a very controversial person,
condemned by many hackers for his ideas about the right to own weapons without limitations, about his
ideas that this community should not be afraid of dealing with big ICT corporations as Microsoft and some
other extremely right-wing ideas6. However, this article is not the appropriate space to talk about hacker
community internal dynamics extensively. I would only to paint a little portrait of it and to place live coding
community inside that. Apparently, it seems that live coders stand more to the Stallman’s side than to the
Raymond’s one. Nevertheless, I have not had the occasion to delve into this aspect yet. It will be one of the
subjects of my future research. 
To come back now to live coding, I wrote in another article that there were previous examples of similar
working method employed for musical purposes, but this happened before the hacker’s movement birth, so
probably it is not correct to label it as “hacker”. However, live coding is the first music milieu in which
recent hackers’ lesson seems to be recognised and taken as example among its members. The most famous
example of this lesson is the making of the Linux operative system by Linus Torvalds. Before live coding
inception, there were only a few possibilities to modify and adapt the music instrument to every single
personality.  One of  these methods  was  to  build  personalised  instrument,  either  by artisans  or  by  DIY
techniques. However, every piece of them has its own constraints and affordances, especially in terms of
pitch range, timbre modulation and number of simultaneous voices. With programming, all these obstacles
are pushed away, or better, anyone can construct his or her preferred instrument affordances. Before live
coding’s inception, music was made quite exclusively by commercial music software. This kind of software
is usually protected against improper usage and, by consequence, against the violation of original code.
Then, the only solution to have customizable music software, apart from make illegal actions, is to employ
free music software that is, by definition, freely “hackable” by anyone who wants to do it. Probably, some
software engineers can have tried to develop his or her customised and customizable music software before,
but they had to start writing it from scratch, because they did not had any pre-existent music program to
modify. Live coding appears to be the first music movement that has employed hacker’s approach to music
software:  reuse and rewrite existent programs and adapt them to personal needs.  Hence,  it  has greatly
contributed to this new music thread by developing many open source music programs and by adopting a
collaborative and informal working method among the community members. 
The last  aspect  to  analyse  about  live  coding is  the  relationship  between  popular  and  academic  music.
Considering that this technique is often employed among dance music practices, especially in Britain but
also in North America, Germany and Spain, it has raised a question of how dance music is perceived in
academic contexts. Alex McLean and Adam Parkinson (Parkinson and McLean 2014) have recently posed
this  problem in  a  conference  speech,  explaining that  dance  and  academic  music  is  frequently  seen  as
opposed, even though they share, in McLean and Parkinson’s opinion, some features and approaches. I do
not  want  here  to  synthesise  the  whole  article  content,  but  only  to  emphasise  the  consequences  of  a
particular statement: «From a research perspective, failure of an algorave can be illuminating. For example,
if we find ourselves standing in a room looking at each other, issues of gender disparity which gravely
undermines computer music culture becomes difficult to ignore». This couple of phrases addresses a very
problematic  situation  that  affects  many  university  departments  but  not  so  much  the  audience  in  the
dancehall. In the article, they demonstrate that this is not a live coding derived issue, but an academic one.
In fact, when they have promoted algoraves through standard dance music promotion channels (radios,
magazines etc.),  says the previous authors,  they attracted many non-academics that enjoyed live coded
music, without gender distinctions. Nonetheless, gender imbalance remain an issue on the stage, where,
both in live coded music and in dance music in general, the event’s line-up is very often a list of masculine
names  with  rare  interruptions.  This  is  evidently  a  general  problem  of  many  Western  societies,  not
attributable to live coding. However, the McLean and Parkinson paper, in posing this issue, signal that the

5 See Stallman’s personal website: https://stallman.org/
6 See Raymond’s post on Linux Today: 
http://www.linuxtoday.com/developer/1999062802310NWSM#talkback_area.



community perceive this imbalance and is reflecting to find possible solutions. To conclude, we can state
that live coding, as cross-practice technique, can be used both in academic and dance music and so it can
put this two worlds in contact and pose problems localisable on the edge between the two. It can become a
bridge for connecting these two apparently distant worlds.

4. CONCLUSION
In this article, I have illustrated the most important features that live coding technique has brought in the
computer  music  performative  context.  After  a  presentation  of  these  innovations,  where  I  spoke  of
improvisation, the screen projection, algorave context and so on, I tried to go a little bit under the surface,
interpreting the effect of these new introductions in computer music performances. All this subjects have
been discussed after an Ethnographical research, which is the paper’s main information source. 
I  have especially  emphasised  the aspect  of  the screen projection,  saying that this beam of  bright  code
becomes a sort of musician’s body substitute, because it seems that the audience is more attracted by this
than by the musicians themselves during performances.  The code on the screen, then, becomes the real
sound source in the public’s view and it is interpreted as the alphanumerical representation of performer’s
musical thoughts. It may be interesting to interpret this situation with a baudrillardian simulacrum’s theory
perspective, but here it is only possible to hint at this choice. It may be an interesting subject for a future
article. 
Among important things said, I would like to mention the relationship between live coding movement and
“hacker’s  culture”,  which appears  to  be  more  than  a  simple  inspiring  source.  In  fact,  many principles
adopted by live coders, as the development of free programs, the building of an equal community and a
collaborative approach, are shared between the two. Probably it can be appropriate to live coders as music
hackers.  
Finally, I have illustrated how live coding community reflects on the relationship between academia and
informal musical  practices as that defined “dance music”.  I  have observed,  referring to the McLean and
Parkinson’s article, that live coding can connect these two worlds, considering its double-faced nature of
improvisatory technique developed in an academic milieu, but used both in formal and informal music
contexts. 
Therefore, to conclude, I think that this brief article, thanks to the Ethnographical approach used to collect
information, has demonstrated the multifaceted nature of live coding technique and that it has begun to
shed light on some important aspects of audience/performer interaction that may have an influence on the
future of computer music performance’s developments. Ethnographical inquiry method has resulted to be a
crucial tool to collect information about the community members, its internal dynamics and to develop a
comparative view between live coding and other artistic and cultural contexts. 
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ABSTRACT
Pietro Grossi has been one of the first pioneers in computer music in Italy. His work, however, is still quite
underconsidered because his art’s concepts was judged utopistic, without a connection with contemporary
cultural  manifestations and harshly anti-academic. Instead, in my opinion, it  seems to be now the right
moment to revalue his work, in order to understand from where some computer music practices have their
roots. In this article, I compare the concepts and the work methods developed by Grossi to those employed
by live coders. My aim is to demonstrate that the Italian composer’s concepts were not only ahead of his
time but also anticipatory of future developments. 

1. INTRODUCTION
Since  my  first  live  coding  experience,  I  feel  very  enthusiast  about  this  innovative  technique.  I  have
immediately  perceived  something different  in  this  way of  making computer  music,  compared  to other
similar types of performances. Here, liveness perception is very strong, audience is completely aware to
attend to a live event. Listeners, instead, do not generally experience the same sensation, during other types
of computer music concerts and this creates a sort of alienation and discomfort among audience members. 
I have attended to my first live coding symposium at the University of Sussex in Brighton. Speaking with
people and listening to the paper, I became increasingly aware that live coding appears to be very similar to
the  experiments  made  by  the  Italian  computer  music  pioneer  Pietro  Grossi,  who  has  done  his  first
experiences in algorithmic composition about 50 years ago. After a review of my MA thesis, which was
exactly pinpointed on Grossi’s computer music and programs, I am feeling quite sure about this familiarity.
Naturally, there are some differences between Italian composer's and his younger “colleagues’” approaches,
due to the diversity of the technology employed. This article’s aim is to help the rediscovering of Pietro
Grossi's work and theory, and to bring his thoughts to the attention of those I consider in some ways his
successors. I also believe that Italian composer's work may have had an influence, perhaps unconscious and
indirect, on the formation of the live coding music practice.

2. INTRODUCTION TO PIETRO GROSSI’S COMPUTER MUSIC
Pietro Grossi has been an “underground” figure in the Italian and European music field during the second
half of the XX century. He was born in 1917 in Venice, but he moved very young to Florence, where he
became the first  cellist  in the orchestra of the Maggio Musicale Fiorentino,  a well-known Italian music
festival based in Florence, during the 1930s. At the beginning of the 1960s, he become interested in analogic
electronic music and he was guested at the Studio di Fonologia Musicale in Milan for fifteen days. This
studio was famous because there, Luciano Berio, Bruno Maderna and some other famous music composers
were  working.  The  result  was  Progetto  2-3.  Some  algorithms  designed  the  sounds’  architecture  by
intersecting a group of six sine waves whose mutual ratio was in slow evolution. After this experience in
Milan, he was so enthusiast about this new music technology that he decided to found his own private
phonology studio called  Studio di Fonologia Musicale di Firenze or S2FM. This was one of the first private
owned  studios  in  Europe.  Moreover,  Grossi  soon  developed  a  large  network  of  contacts  with  many
important electronic music studios around the world. 
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Since the late 1950s, big mainframe computers became to spread throughout Western countries and, at the
same time,  many technicians  and  musicians  started  to  experiment  these  machines'  music  possibilities.
Among pioneers, we can surely list Leonard Isaacsson, Lejaren Hiller, Gottfried Michael Koenig and, last but
not least, Max Mathews. Grossi began to be interested in computer music during the first half of the 1960s,
when he hosted a radio program centred around “innovative music” in general (Giomi1999). However, the
first Grossi's experience with calculator took place in Milan, in the Olivetti-General Electric Research centre.
Here, aided by some internal technicians and engineers, he managed to compose and record some of his first
computer music works. They were, for the most part, transcriptions of Western classical music. However,
there were some exceptions, for example a track called Mixed Paganini. The name was a consequence of the
original music material, which comes from the Fifth Paganini's Capriccio for solo violin. The Olivetti GE-115
computer  played  that  piece  in  various  ways:  inverted,  accelerated,  retrograded  etc.  Practically,  Grossi
modified, aided by some rudimental music programs, the original sound material. People that was able to
listen to Grossi’s music complained about that because they felt this approach as a “profanation” of the art's
sacredness and “aura”. A later collection of Paganini’s  Capricci, recorded in Pisa, was reviewed by Barry
Truax on Computer Music Journal (Truax1984).
In this early period, Grossi was not very satisfied by his work at the GE-115 computer because he cannot
experiment freely. Moreover, the corporation's steering committee has lost much of the previous interest in
the Venetian composer's music experiments. Then, Grossi began to look for a different place for developing
his thoughts, and he finally managed to be admitted at the IBM Research Centre in Pisa, inside the CNR
Institute (Centro Nazionale per la Ricerca: National Research Committee). Here he was able to work with a
video terminal and alphanumeric keyboard, a very new technology for that time. Thanks to this device, he
started to learn FORTRAN programming language and developed his first music software DCMP (Digital
Computer Music Program). This was one of the first live coding programs in my opinion, because, using
that,  the  performer  was  able  to  produce  and  reproduce  music  in  real  time  by  typing  some  specific
commands and the desired composition's  parameters.  The sound result  came out  immediately  after the
operator's  decision,  without  any  delay  caused  by  calculations.  There  were  many  reproduction  choices
inscribed in this software: it was possible to save on the computer memory pieces of pre-existing music, to
elaborate any sound material in the hard disk, to manage the music archive and to start an automated music
composition process based on algorithms that worked with “pseudo-casual” procedures. There were also
plenty of choices for piece structure modifications. One of the most important aspects of Grossi’s work was
that all the interventions were instantaneous: the operator had not to wait for the computer to finish all the
requested operations and then hear the results. Data calculation and sound reproduction were simultaneous.
This simultaneity was not common in the computer music field of that time and Grossi deliberately chose to
work in this  way,  losing much on the sound quality’s  side.  His  will  was  to listen to the sound result
immediately. He was a musician and he probably could not stand to fill a chart or to write a long string of
commands and parameters and then wait the whole calculation and recording process before being ready to
play the result. He wanted “all and now”, as he said very often (Giomi1999). With that expression, Grossi
would address that when he inserted some commands on the computer screen, he did not want to wait
anything before hearing the result. He defined himself as “lazy”, pigro1 in Italian. Lazy address, in Grossi’s
sense, to a person who is aware that his or her time is limited and do not want to waste time in doing
useless things or in waiting for something when it is not necessary. His or her actions should be as efficient
as possible, to save time for enjoy the life fully. Eric Raymond2 has stated some similar for describing the
hacker’s philosophy. This approach should sound familiar to live coders as well, considering that they are
musician but also programmer and many of them seems to have something in common with free software
community, in Stallman’s sense (Stallman2010).
The  DCMP was  compiled  in  the  early  phase  of  computer  technology  development.  At  that  time,  the
calculation resources were low and, to obtain the just cited real time reproduction, it had to ask for very low
quantity of data. Therefore, the Venetian musician chose to write very light software, able to modify only
parameters that required a few calculation resources: pitch and duration. Timbre synthesis needed a big
amount of data, so that choice was temporarily discarded and all the sounds were reproduced with square
wave timbre.  This waveform was generated by extracting the binary status of a motherboard's exit pin
controlled by the software. This exit had only one bit, so the sound wave generated was the result of this bit

1 Grossi as nickname in some of his records used Pigro, or better PiGro. It is a play on words made by using
his name first letters: Pietro Grossi. 
2 Eric Raymond’s post on Linux Today: http://www.linuxtoday.com/developer/1999062802310NWSM



status changing. In this way, the computer did not employ any resources for calculating the sound synthesis,
saving them for music production process. Grossi was not very interested in the quality of sound output in
this first phase in Pisa. What he cared particularly was to be able to work in real time, or, in other words, to
have the choice to listen immediately to what he typed on the video terminal’s keyboard (Giomi1995).
Some technology improvements permitted Grossi to implement timbre elaboration around the first half of
the  1970s.  In  this  period,  the  CNR steering  committee  decided  to  project  and  build  a  brand new and
innovative  sound  synthesiser,  digitally  controlled  but  with  analog  sound  synthesis  technology.  It  was
launched in 1975 and called TAU2 (Terminale Audio 2a versione – Audio Terminal 2nd version). 
Grossi was the new machine’s software developer. For making this, he took as a reference the previous
DCMP, adding to it many new features and a brand new section dedicated to TAU2's management. The new
program’s name was TAUMUS. The new software and hardware system could play up to twelve different
voices simultaneously. These twelve voices were divided in three groups, composed of four channels each.
The operator could choose to assign a different timbre to every single group, which was modulated using
additive synthesis with seven overtones. Every overtone could be controlled individually by software.
It may be interesting to mention that using these two music systems - DCMP and TAU2-TAUMUS - Grossi
developed his most innovative artistic conceptions as those of, for example, infinite music and automated
composition. With the first, Grossi addressed to a music production process without predetermined end: a
music that flows forever, without interruptions. With automated composition, instead, he defined a music
created  without  any  human  intervention  after  the  start  of  elaboration  process.  Every  decision  was  a
computer’s task, or better, a software’s task. This last one is an extreme example of aided music composition.
This fundamentalist approach may have stimulated the developing of automated process inside computer
music practice. To make an example in the live coding field, if someone types on software's main window a
command to let the computer reproduce a beat pattern, the computer will play it automatically, and the
performer can dedicate his or her attention to the next task. That pattern will not stop without external
intervention. Andrea Valle3 states that these two approaches own to “instrument logic” and “machine logic”.
The  instrument  needs  continuous  stimulation  to  be  operative.  The  machine,  instead,  need  only  to  be
programmed and then it will work respecting that program.
In the first period of music experiments with DCMP, the calculation resources available to Grossi were very
low and this did not enable the musician to change the result in real time while the process was running.
Then, it was necessary, if he wished to modify one or more parameters during the elaboration, to stop the
entire process,  make the desired changes and restart  it  from the beginning. When the process  was an
automated composition, it was not possible to vary any parameter at all, because the program took every
decision  autonomously.  But,  as  it  will  be  shown  later,  there  are  some  evidences  in  Grossi's  music
applications, especially the latest ones, that shows his aim to develop the sound output in real time, in a
surprisingly similar way to that of live coding performances.

3. GROSSI’S SOFTWARE AND HARDWARE
First,  I  would  like  to  introduce  the  DCMP’s  architecture  and  functions.  Grossi  started  to  develop  his
program in 1969, when he began his career at the CNR in Pisa. The software was written in FORTRAN and
designed to work on some different machines: IBM 7090, IBM 360 model 30, 44 and 67 (Grossi and Sommi
1974). DCMP was provided by many different commands, both musical and non-musical. The last ones were
principally commands dedicated to the musical archive management: erase, move, rename files and so on.
The first ones, on the other hand, were designed to modify pre-existing pieces or to compose and play new
music by using both automated and non-automated compositional procedures. The system could play about
250 notes between the frequencies interval 27 Hz - 4900 Hz. The minimum step between two sounds was a
third of a semitone. The whole pitch range, then, was approximately that of a grand piano. It was possible to
play notes addressing to them in various ways: by using alphabetical or Italian system or by using the note's
number in a default note chart. It  was not possible to manage neither the timbre nor the dynamic nor,
finally,  the  number  of  voices,  because  of  sound  synthesis  method,  as  explained  above  (Grossi  and
Sommi1974). 
All the music pieces created with the DCMP could be saved in the computer’s archive.  From there,  the
operator could recall any track with specific commands, upload the chosen one in the work memory and

3 See Andrea Valle’s interview: http://www.soundesign.info/interviste/intervista-con-andrea-valle



elaborate, modify and finally play it. The sound processing instructions were numerous: MIX, for example,
mixed two tracks’ parameters pre-uploaded in the working memory. It can exchange the note's durations of
one track with those of the other, or sequencing two notes of the first and one of the second track, and so
on.  Some  other  interesting  commands  were:  GOBACK,  that  reproduced  the  track  placed  in  the  work
memory  from the  end;  INVERT,  that  inverted  the  pitches'  ratio  in  respect  of  a  pre-determined  value;
SHUFFLE,  that  mixed randomly two tracks'  parameters;  and so on. The operator  could stop the music
reproduction in every moment, change any parameter, and restart the process. However, it is not possible to
define this as performance, because the system needs to stop the elaboration process to act every kind of
intervention. It were not interactive (Grossi and Sommi 1974). 
There were another choice for creating music employing DCMP: automated composition. There were some
commands dedicated to this function, but the most interesting one was, in my opinion, CREATE. The only
action requested to reproduce music through this command was to type the desired total piece duration on
the screen and start the process. The program then started to play random notes generated by specifically
designed algorithms based on Markov and Lehmer chains. Those algorithms were studied to create as less
repetitive flux of sounds as possible. The time limit for automated compositions were fixed by software at
about 300 years, then almost endless for a human being (Grossi and Sommi 1974).
Thanks to the technology advancements, in 1972 Pietro Grossi and the CNR team began to project the TAU2
synthesiser and the TAUMUS software. The TAU2-TAUMUS system was able to reproduce about the same
note range of DCMP system. There were many differences, however, between them. The most important one
was that, by using the newest one, the operator could play many melodic lines with different timbres. In
fact, the TAU2 was able to reproduce up to twelve voices simultaneously, grouped in three different set.
Each  set  could  assume  a  distinctive  timbre.  As  I  have  already  written,  the  sound synthesis  technique
employed was the additive synthesis, with seven overtones (Grossi and Bolognesi 1979).
Another crucial TAU2-TAUMUS’ improvement in respect of DCMP was the modelli modulanti (modulating
models): they were a sort of patches that acted on some musical parameter. The most interesting aspect is
that these patches worked in real time, and the operator did not need to stop the process to change the
sound output,  as happened before.  This was a critical  innovation under the performative point of view,
because then Grossi was able to play and to interact in real time with the software, by typing instructions
on the keyboard without stopping the sound flux. It is clear, then, that his interest was to be able to work
with sounds with a real-time interaction. In this way, the computer becomes a true music instrument and
not only a sort of augmented music player. 
All these aspects get Grossi very close to the newer live coding practice. Moreover, what I have explained
shed more light on the Venetian’s research direction, making us wondering about his potential goal if he
was remained in a stimulant research milieu. In fact, in 1982 the TAU-TAUMUS system developing was
abandoned for the increasing number of bugs and failures. After this long period in Pisa, he began to work
at  another  CNR  institute  in  Florence,  called  IROE,  where  he  continues  his  experiments  with  a  new
synthesiser: the IRMUS. This last one, unfortunately, was very less powerful and ambitious than the TAU2,
because it could reproduce only two voices simultaneously. Nevertheless, IRMUS was very flexible on the
timbre side, thanks to the FM synthesis method adopted. Unfortunately, this synthesiser was not sufficiently
powerful and stimulant for Grossi and he decided, after a brief period, to quit his music experiments (Giomi
1999). 
Grossi, however, was a very curious person, so he could not stay without a computer and then he decided to
buy  one of  the  first  popular  PC on  the  market,  the  Commodore  64,  and  to  make experiments  in  the
computer  graphics field.  He came up to this decision after discovering that these machines were more
powerful on visual than on audio processing side. Therefore, he started to adapt all of his programs to the
new  project  (image  elaborations  in  real  time),  recycling  also  his  concepts  about  sound  processing
(Giomi1999). Even on this aspect, there may be a link between Grossi and live coding. In fact, in Lisbon,
during a performance organised for the conference on Live Interfaces, I have seen that live coding is not
only employed in music but also in image processing practices. Then, probably, further research on this
aspect will underline many other affinities between Grossi and live coding movement.
I would like to return briefly to the TAU2-TAUMUS system, because at the end of the 1970s it faced an
important  improvement:  it  became  possible  to  control  the  synthesiser  remotely.  This  new feature  was
deemed so important that the software name becomes TELETAU. Then, it was possible to generate sounds
and listen to the result  immediately,  ideally everywhere,  thanks to a telephone connection between the



TAU2, the computer and a remote terminal (Grossi and Nencini 1985). However, similar experiences were
possible also with DCMP and the first one took place as early as 1970 and was called “musical telematics”.
Grossi made his first experience of this kind during a conference on technology in Rimini in 1970, where the
musician reproduced many of his compositions and random sounds as well, by employing a video terminal
connected via telephone to the CNR's computer in Pisa. RAI, the Italian public broadcasting company, lent
its powerful FM radio bridges to send back sound signals from Pisa to Rimini. It is likely to be the first
official experiment of musical telematics in the world (Giomi1999). 
After this exciting event, Grossi went on developing his project along the others and the result was the just
cited TAUMUS' update: TELETAU. In a similar way to that of the DCMP, this software enabled whoever
connected to the BITNET computer network, to exploit remotely the CNR computer calculation resources
and to immediately listen the sound results produced by TAU2. Practically, every person connected to this
network was able to use the TAU2-TAUMUS system as if he or she was in Pisa in front of the machine
(Bertini et al.1986). 
Unfortunately, this service lasted only for a few years. There were many reasons for this decadence: the
rapid ageing of the TAU2 synthesiser, with frequent breakdowns and bugs that increased dramatically the
maintenance effort and costs; the rapid diffusion of personal computers; the high cost of data transmission
and, last but not least, the low quality of sound output due to slow data connection. 
This working practice was strongly promoted by Grossi because, since his career's inception as electronic
musician,  he  struggled  to  develop  a  communitarian  and  egalitarian  work  method,  based  on  shared
knowledge, on free re-elaboration of pieces created by different musicians and on spreading as much as
possible this conception to other similar working groups or single artists. In addition, this approach appears
to me as anticipatory of that typical of live coding milieu. In fact, in my view, live coders too undertake to
create an egalitarian community, based on almost the same philosophy promoted by Grossi. Nearly all the
programs used by live coders are open source, or free software in the Stallman’s sense (Stallman2010), and
people inside this community often modify and create customized software by reprocessing those of others.
Moreover, I have assisted in Birmingham to an online performance at the Network Music Festival, where
three live coders located somewhere around the world (Alex McLean, David Ogborn and Eldad Tsabary) met
in a virtual place (the remote server) to play the concert we assisted to. I think that Grossi's work on musical
telematics pointed out to similar kinds of music making. 
Probably however, his artistic conceptions were too ahead of his time. The technology and probably the
culture were not still ready to accept the detachment of music from human agency. The process of body
dematerialisation has started long time before Grossi's work: radio and telephone inventions gave birth to
all  the  subsequent  technology  transformations.  Electricity  carried  out  a  central  role  in  this  process
(McLuhan1964). Probably the development of mediatization, whose implication is described very well by
Philip Auslander in his well-known book Liveness, is a natural developing of the mass media technology and
requires a recontextualisation of the body's role in our contemporary society. The physical co-presence is no
more  necessary  to  communicate.  It  is  apparent  that,  with  the  spreading of  social  networking and the
Internet in general, the most part of communication between humans, at least in Western societies, passes
through mass media. Live coding stands inside this process as protagonist, because its practitioners seems
not  to  be  astonished  in  front  of  a  remote  driven  performance.  Grossi  was  probably  more  tied  to  the
performer’s materiality, because he never plays computer for a remote public in an acousmatic setting. He
dematerialised the music instrument, but not the musician. Live coders instead do not have problem to
express themselves through online connections. Nevertheless, we all express ourselves regularly through
the same medium when we use social networks or the Internet in general and our identity is increasingly
constructed through the Internet. 
Finally yet importantly, Grossi took advantage of the TELETAU system by teaching to his pupils in Florence
(actually he has taught at the Conservatory of Florence since the early ‘60s) without moving from his class.
He was also the promoter of the first Electronic music course in an Italian conservatory in 1962 and, as well,
the first Computer Music course in 1970s.



4. CONCLUSION
In this article, I tried to show the main characteristics of Pietro Grossi's computer music experimentations.
Beside this, I have underlined the most striking similarities between the Italian algorithmic music pioneer
and the live coders’ works, in particular apropos of the respective processes of music making. 
After having synthetically explained Grossi's approach, I would like to conclude this presentation with some
reflections on the two central experiences illustrated in this article, to give more weight to these affinities. 
I have said above that Grossi began to learn programming immediately after his arrival in Pisa, with a well
equipped studio and a numerous team of engineers. He started studying programming languages because he
knew precisely what he wanted and he was very focused on realising them. He strongly believed that
teamwork was the better way to obtain a good and satisfying result, so he struggled to become an active
member of this group. This is a strikingly similarity between Grossi and live coders, because also many of
them have developed their own music software, sometimes aided by a community of developers, placing
themselves on the edge between the world of musicians and that of programmers. 
Another common feature between the Venetian composer and his “heirs” is that they all demonstrate a
strong interest  in  sharing their  knowledge on  egalitarian basis,  by  using or  writing programs without
copyright licenses and by creating a multidisciplinary and collaborative work community. In fact, Grossi
was one of the first artists that believed and worked in a way typical of what today is defined open source
or free software field. He had very soon adopted a working method that anticipates the principles of the free
software communities. To confirm this, it is sufficient to say that, starting from the work at S2FM (Music
Phonology Studio of Florence), he gave a collective name to the records created there name because he
thought that they were products of the whole community’s work. Moreover, the whole studio staff often
recycles pieces recorded by external artists to create something else, in a sort of proto-remixing practice.
Grossi also gave his audio materials freely to musician who requested them, but also by sending tapes all
around the world. Inside every parcel, he always inserted a little letter to invite the addressee to rework the
tape content personally, without any limit and without asking any copyrights. Something similar happened
as well for Grossi’s software in a later period, when he was able to spread his programs out of the CNR
studio in Pisa. In fact, the TELETAU system was explicitly created to broaden TAUMUS-TAU2 employment.
When Grossi began to work at home with his new Commodore 64, he went on following the previous path.
He was in constant contact with many artists and, as soon as he managed to own an Internet connection, he
designed his own website and shared all his new and old software, inviting visitors to download and modify
it freely.  Thanks to this pioneering behaviour,  he has been recognised as one of the open source music
software’s  ancestors  among  some  hacker  artists  (for  example:
http://www.hackerart.org/corsi/aba02/taddepera/index.htm).
Another convergence point between Grossi’s and live coders’ approach is the TELETAU system: the use of a
network to make music from remote places. Grossi was able to program a system that, by using a video
terminal, it was possible to run the music software in Pisa remotely and to hear immediately the sound
result. Live coders use sometimes a similar approach. The above-cited example I made about Network Music
Festival in Birmingham (UK) suits perfectly here, but there are also some other examples as that of BEER
ensemble, which work and play through a VPN connection to synchronise and to send music to each other
(Wilson et al. 2014). In many live coding contexts, then, the network is a crucial tool for working in real
time. In my opinion, Grossi was experimenting precisely in this direction. As I have hinted above, however,
the live coder’s case sometimes imply that the performer becomes invisible, located in a remote place in
respect of that of the sound reproduction. Grossi instead wanted to be present in the same place where the
audience heard the sound. 
Another important similarity between Grossi and live coding is the user interface. In both cases, the music
tool employed by the musicians is the text, and both require written commands and parameters to obtain
precise audio results. Additionally, each refers more to the programmer's perspective than to the musician's
one because there is not a direct correspondence between gestures and the sound heard (see note 3). In
Grossi's case, however, choices are fewer than in the live coding one. Nonetheless, the performing practices
of each example seems to be quite similar, because in every case, there are commands that recall precise
algorithms,  launched  and  modified  normally  by  typing  their  name  and  parameters  on  the  screen.
Consequently, it seems that keyboard, screen and text itself have together a central role in playing and
representing the musical ideas. 



Finally, it may be important to cite briefly the modelli modulanti’s case, the above-cited patches that modify
the final audio output in real time. The Grossi’s effort to develop these little programs demonstrates, in my
opinion, his intention to interact with the computer on the fly. By consequence, this action switches Grossi’s
musical  practice  from  music  composition  to  performative  context.  This  crucial  aspect  of  the  Grossi's
computer music work is worth to be emphasised here, because it carries the Venetian composer very close
to live coders. The modelli modulanti demonstrate Grossi's strong interest to employ the computer as a real
music  instrument,  or,  in  other  words,  as  a  device  able  to  translate  music  thoughts  in  sounds  in  a
performative way. Grossi himself confirm his interest about real-time music procedure, speaking about this
aspect very often in his books and articles (Giomi1999). 
To conclude, then, after having explained all these similarities between Grossi’s and live coders’ work (a
predominant textual interface, experimentation of online performances, an egalitarian and communitarian
approach to programming and to culture in general) it may be appropriate to define Grossi as a proto-live
coder.
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ABSTRACT

Collaborative problem solving is a key methodology for tackling complex and/or contentious problems. The
methodology is supported by computer and communication systems that bring human solvers together with
computational agents and provide clear protocols for exploring and rating alternative solution approaches.
However, these systems can be challenging to use due not only to the complexity of the problems being
solved  but  the  variety  of  abstractions  involved  in  managing  the  solution  process,  e.g.,  problem
representations, collaborations, and strategies. This paper offers new ideas to help the human users of such
systems to learn and work more effectively.  It also suggests how problem solving may sometimes be carried
out in performance contexts similar to those of livecoding improvisational music. Most important here is
the identification of seven forms of liveness in problem solving that may heighten a solving team’s sense of
engagement.  Common  themes  among  them  are  increasing  solvers’  awareness  and  minimizing  latency
between solver intentions and system responses.  One of the seven livesolving forms involves solvers in
tracing paths within problem-space graphs. This and the other six forms derive from experience with a
system called CoSolve, developed at the University of Washington.

1. INTRODUCTION

1.1 Motivation

Problem solving has somewhat different interpretations in different disciplines.  In mathematics it usually
consists of finding "answers" in the form of numbers or mathematical expressions, and it sometimes means
coming up with a multi-step proof of a formal proposition.  In business administration, problem solving
typically refers to the decision making that owners and CEOs do in order to manage their operations or
expand their markets.  In psychological counseling, problem solving refers to the resolution of personal
relationship conflicts, family strife, or depression.  In engineering, problem solving may require the design
of  a  machine or part  that will  satisfy  a set  of  specifications.   In  spite of  having somewhat specialized
connotations in particular fields like these, people solve problems almost continuously during their lives,
some of them very minute and subconscious such as the avoidance of puddles and stones when walking,
and  some of  them more  deliberate,  such as  deciding what  groceries  or  brands of  items to  buy at  the
supermarket. Our aim is to support solving in some of these areas, but primarily situations in which there is
enough value in formalizing the problem that people will be willing to consciously think about the problem
in its  formalized representation.   Puzzles  often figure prominently  in  discussions of  computer  problem
solving, and I use them here because they facilitate conceptual explanations.  However, I mention a variety
of other problems, such as understanding climate change, to clarify other points.

Three reasons for supporting problem solving are (1) to help get important problems solved such as climate
change, poverty, or world peace, (2) to help teach people how to solve problems in new and potentially
better ways, and (3) to facilitate the art and performance of problem solving -- e.g., "livesolving."  In our own
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group, a principal motivation is to find new ways in which technology can further empower people in
problem  solving.   This  paper  focuses  on  forms  of  problem  solving  that  resemble  livecoding  or  live
programming, as these terms have come to be known. Liveness in problem solving promises to contribute to
either the effectiveness with which human solvers can accomplish the solving itself or the effectiveness with
which the humans can artfully  demonstrate solving activity.  Livesolving is  a  new avenue by which to
improve people's ability to solve problems and to share the share the solving process.

1.2 Definition

Livesolving refers  to  problem  solving  activity  performed  under  circumstances  associated  with  live
programming: (a) the use of computational affordances that respond in real-time, (b) the potential presence
or virtual presence of “consumers” such as audience members at a performance, and (c) improvisational
elements of creative synthesis and non-retractability.  Whereas live programming typically involves the
editing of program code, livesolving involves the manipulation of problem structures such as formulations
of problems (“problem templates”), state variables, and fragments of solution paths.  By supporting and
studying livesolving, we seek a better understanding of best practices in the design of methodologies and
tools to support humans in complex, creative work.

2. PRIOR WORK

2.1 Theory and Systems for Problem Solving:

When artificial intelligence research started in the 1950s, it paid particular attention to problem solving.
The "General Problem Solver" (GPS) developed by Allen Newell,  J.  C.  Shaw, and Herbert  Simon (1959),
involved  articulating  a  theory  of  problem solving that  was  subsequently  developed  and used  both  for
designing computer agents and for modeling human problem solving (Simon and Newell 1971; Newell and
Simon 1972).   I refer to the core aspects of the theory as the "Classical theory of Problem Solving" (and just
"Classical Theory" below).  Numerous researchers have contributed to the theory, and a number of books
have explained the ideas well (e.g., Nilsson 1972,   Pearl 1984).  The primary motivation for all this work was
to be able to build intelligent, automatic problem solving agents.  The secondary motivation was to find a
new theory for human problem solving.

Others,  including my group,  have had  a  different  motivation:  to  support  human problem solvers  with
appropriate computer technology.   At the Swiss Federal Institute in Lausanne, a mixed-initiative system
was  developed  that  supported  a  human  problem  solver  in  the  formulation  and  solution  of  problems
involving combinatorial  constraints  (Pu and Lalanne 2002).   In  my own group,  the focus has  been  on
supporting teams of solvers who collaborate on the solution to problems, with the assistance of computers.
A system we developed, called CoSolve, embodies the classical theory and gives a solving team web access
to a shared session that includes an explored subset of a problem space (Fan et al 2012).  Two user roles are
supported by CoSolve: "solving" and "posing." The solvers work in small teams to construct "session tree"
objects that represent realizations of portions of problem spaces.  Figure 1 is part of a screen shot from
CoSolve showing a session tree for a Towers-of-Hanoi puzzle.  The posing role in CoSolve engages users
called posers in "scaffolded programming" by providing online forms that hold fragments of Python code to
represent the components of a problem formulation. Related to posing are the activities of understanding
and transforming information (e.g., see Russell et al, 1993, and Mahyar and Tory, 2014, on sensemaking and
Kearne et al, 2014, on ideation.)

CoSolve was designed and built after a previous prototype, called TSTAR, proved to have so much latency
for sharing of solving activity within a team that solvers did not feel that they were really working closely
together when solving (Tanimoto et al 2009).   CoSolve, however it managed to reduce the latency, still had
enough latency that the solvers would sometimes get annoyed, and we are working on a successor system



in order to further reduce such latency.   It is the latency issue, for the most part, that connects the topic of
computer-supported problem solving with livecoding.

2.2 Forms of Live Programming:

Reducing  the  latency  between  coding  (editing  code)  and  execution  (seeing  the  results)  has  been  a
fundamental goal of live programming (Tanimoto 1990, 2013).  The various ways in which this takes form
depend on the style of programming and the available technologies.  Without going into details here, we
can simply  say  that  live  programming has  two key  aspects:  (1)  editing  the  running program without
stopping  it,  and  (2)  reducing  the  latency  between  code  editing  and  execution  of  that  code  to  an
imperceptibly small interval of time. 

Livecoding usually refers to a particular form of live programming in which the programming is part of a
musical  performance,  the  music  being  generated  by  the  code  as  the  code  is  modified.   This  kind  of
programming is a form of improvisational performance, and it would have this character even if the output
were changed from music to dynamic visual art.  Livecoding is of particular interest to those who study the
psychology of computer programming, not only because it is an unusual context for programming, but
because  it  puts  the  programmer  rather  than  the  language  or  the  software  at  the  center  of  attention
(Blackwell and Collins 2005). Later in this paper, I'll consider the related case where the output is problem
solving state, rather than music or graphics per se.

2.3  Cognitive State of Flow

Bederson  (2004)  has  argued  that  human-computer  interfaces  that  support  cognitive  tasks  should  be
designed to keep the user in a psychological state of "flow." Such a state can be characterized as one of
intense focus as a task progresses. In order to support such user focus, the interface must be designed to
avoid undue latency and to anticipate the possible next states of user attention, providing some of the
information  that  will  be  needed  prior  to  any  delays  due  to  communication  networks  or  computer
processing.

3. FORMS OF LIVESOLVING 
By considering the several ways in which users of our CoSolve system interact with it, one can identify
corresponding ways to reduce the latency of those interactions.  In this section, seven forms of livesolving
are described that derive from this analysis.

CoSolve engages human solvers in posing problems, initiating solving sessions, and solving the problems.
In this paper, I neither address the posing process nor the session initiation process, and thus the focus is on
solving.  Solving in CoSolve consists in the deliberate selection of existing states in a session, the selection
of operators to apply to them, and in some cases,  the selection or specification of parameters to those
operators.  One "turn" consists of selecting one state already in the session, selecting one operator, and if the
operator takes parameters, selecting and/or writing the values of those parameters.  When the user inputs
this information, typically over the course of several seconds in time, the choices are relayed to the server
which computes a new state and sends it back to the client.  The new state, added to the session by the
server, is then drawn on the client screen as a new part of the tree representing the session so far.

Here are seven forms of livesolving in the context of a system that supports collaborative problem solving.
They are discussed in greater detail in later sections. Not supported in CoSolve (with the possible exception
of #5, livesolving presentations), we are building them into a new system code-named "Quetzal."  The order
in which the forms of liveness are listed here may seem arbitrary,  but corresponds to my estimates of
importance to design of next-generation general solving systems. 



The first promotes thinking strategically at the level of problem spaces, which without the immediacy of
visualization  and  live  interaction  is  conceptually  difficult  for  solvers.  The  second  dispatches  with  any
unnecessary latency in adjustment of parameters, something needed in solutions of many problems.  The
next two can affect the relationships between a solver and her/her collaborators and/or audience members.
Livesolving form number 5 is associated with the design of dynamic objects such as animations or computer
programs. Form number 6 means that solving decisions that might be considered finished can be revisited
without  necessarily  undoing all  the  work done since.   Finally,  livesolving form 7 directly  supports  an
experience of flow that offers a potentially exciting new modality of solving that might be effective for some
problems or as a training aid for human solvers.

1. "Drawing and co-drawing solution paths."  The user traces a path (or two or more users co-draw a
path) through a display of the problem-space graph.  The system supports the drawing process and limits
the trace to legal paths,  according to the problem specification.  The turn-taking time of CoSolve-style
interaction is reduced to an almost imperceptible delay.  The possible challenge for the user of staying on a
legal path can be limited by the system through intelligent interpretation of the user's drawing intent, as
explained later.

2.  "Live  parameter  tuning."   One  part  of  the  operator-application  turn  described  above  is  the
specification of  parameter  values.   CoSolve  requires  that  the  user  make a commitment to  a  particular
parameter vector prior to operator application.  This means that the user cannot easily make a series of
small adjustments to a parameter value using feedback from the system.  Live parameter tuning means that,
upon operator  selection,  the system will  display a new state showing the consequences of  the current
parameter  values  without  requiring  a  commitment  to  those  values,  and  furthermore,  there  is  instant
updating of the state and its display as the parameters are adjusted using appropriate input widgets such as
sliders.

3.  "Synchronous co-solving."   Whereas CoSolve's  group awareness feature allows each solver to
become aware of other users'  edits to the solving-session tree through small graphical indicators, actual
updates to the user's session-tree display do not occur until the user requests them.  On the other hand, with
fully  synchronous  co-solving,  any  team  member's  edit  to  the  solving-session  tree  is  automatically
propagated to each team member's view of the tree with only a small, deliberate delay introduced so that a
smooth animation can provide continuity between the old and new views.

4. "Livesolving presentations."  This is solving a problem, using computer technology, in front of an
audience or video camera. While it doesn't require any new technology per se, it can benefit from a variety
of standard technologies and affordances, such as means for highlighting, annotation, bookmarking, and
linking to multimedia facilities.

5. "States alive."  In CoSolve, states in a session are shown as nodes in a tree, with static images as
graphical  illustrations  of  each  state.   Additional  details  of  state  information  are  available  to  users  by
clicking, after which JSON code is displayed.   The restriction that states be presented in this manner means
that certain kinds of problems, such as animation design problems, cannot be solved in the most natural
manner.  To improve that, states can be permitted to have dynamic displays.  Thus, if the state represents a
dynamic process, such as a computer program, then states-alive liveness will allow the user to observe,
within a session tree  or  problem-space  visualization,  a  collection of  running animations,  reflecting the
running programs the states represent.

6. "Ancestor modification." In CoSolve, each turn of operator application is a commitment. States can
only be added to a session, not deleted.  Furthermore, existing states cannot be modified.  That limitation
simplifies session management in collaborative contexts, and often there is no problem having a few extra
states around, representing evidence of solver exploration prior to finding a good path.  The difficulty comes



up when a long chain of operator applications hangs off of an ancestor that needs a change.  CoSolve treats
the ancestor as immutable, and in this sense of no longer supporting interaction, "dead."  With ancestor-
modification liveness, edits to ancestors are permitted, and they have the effect of raising such states from
the dead and letting them be modified.  There are two alternative policies for this.  One is that the ancestor
is immediately cloned, with the original remaining immutable.  The other policy is that there is no clone,
and the ancestor itself will be modified.  Modification may involve simply re-specifying or re-tuning the
parameter values used in the operator that created the ancestor.  However, it may also involve a change
requiring the use of an entirely different operator and possibly new set of parameter values as well.  In
either case, a change to the ancestor may require either of two kinds of changes to its descendants: (a)
updating of the state variables affected by the changed parameter(s),  (b) pruning of descendant subtrees due
to violations of operator preconditions by the new ancestor or by other updated states. 

7. "Driving an agent." Whereas the first form of livesolving (drawing and co-drawing solution paths)
achieves its dynamics by the users' hand or stylus motions, in driving-an-agent liveness, the solving process
proceeds with a form of momentum (speed, direction in the problem space, restricted deceleration) that
means steering decisions must be made at a rate that avoids the wrong turns and dead ends that would be
made by the agent's default behavior.  Computer agents for problem solving come in many forms, and the
most obvious application of this form of liveness works with a depth-first-search agent.  However, it can
apply to almost any solving agent that can accept input over time.  To make this form of liveness effective, a
good display must be provided to the driver (the user or users) so that each decision can be made on the
basis of the best information available at the current point in the search.

4. LIVESOLVING WITH FINITE PROBLEM SPACES    
In this and the following two sections, I discuss the seven forms of livesolving in more detail.  I have chosen
to categorize four of them roughly according to the nature of the problems they might be applied to and the
other three by their "social nature."  However, this classification is primarily for convenience of presentation
rather than something necessitated by the affordances themselves.

4.1 Characteristics of Finite Problem Spaces

A finite problem space is one in which the number of possible states for a solution process is bounded.  For
example, in a game of Tic-Tac-Toe, a reasonable formulation leads to a problem space with 5478 legal states.
(This rules out states having more Os than Xs, and many others, but not duplicates modulo symmetries.)
Although mathematical  finiteness does not strictly imply enumerability by a computer  in  a  reasonable
amount of time, we will consider, in bringing liveness to solving these problems, than the space of states can
be mechanically explored, fully, and that the time required to do this is taken care of in advance of the
livesolver's encounter with the solving process.  The livesolver's job might therefore be to demonstrate the
selection of a good sequence of states from the problem's initial state to one of its goal states.  The fact that
the states have been precomputed before livesolving begins does not necessarily mean that the solution has
been found in advance (although that is possible).

4.2 Drawing the Solution Path by Tracing over a Problem-Space Graph.

Our first form of livesolving, drawing and co-drawing solution paths, is a good fit for working in finite
problem spaces.   The finiteness means that it might be feasible to determine a state-space map for the
problem in advance, and to offer it to the livesolver(s), as a substrate, for solving by drawing.

As an illustration, let's consider the Towers-of-Hanoi puzzle.  Part of a CoSolve session tree for a 3-disk
version of the puzzle is shown in Fig. 1.  The initial state is at the root of the tree, and states created by
making moves from it are shown underneath it.  Now let's consider a version with 4 disks. The state space



for this problem has 34 = 81 states.  The state-space graph for this problem contains one node for each state
and an edge between nodes ni and nj (corresponding to states si and sj) provided there are operators that
transform state si into sj and sj into si.   Various layouts for this graph are possible.  Figure 2 shows a layout
constructed by assigning to each node three barycentric coordinates determined by assigning values to the
presence of the various disks on each of the three pegs. The smallest disk is counted with weight 1; the next
with weight 2; the third with weight 4; and the fourth with weight 8.  The initial state of the puzzle is
plotted at the lower-left vertex of the equilateral triangle, because the weight of all disks is on the first peg.
Similarly, the other two vertices of the large triangle correspond to states in which all the disks are on the
middle peg or all the disks are on the right-hand peg.

There are six operators in a standard Towers-of-Hanoi problem formulation.  Each is of the form "Move the
topmost disk from Peg i to Peg j."  In Figure 1, the spatial direction in which a node transition is made
corresponds directly to the operator involved.  For example, from the initial state, moving the smallest disk
from Peg 1 onto Peg 2 is shown by the line segment going from the node marked 0, diagonally up and to the
right.

Livesolving with this state-space graph is tricky, because the solver would like to move directly from the
lower-left vertex to the lower-right vertex, and yet no direct path exists.  In fact, the shortest 

Figure 1.  Portion of a CoSolve session tree for a 3-disk Towers of Hanoi puzzle. A solver generates one
state at a time by making a selection of a node and an operator.



Figure 2.  State-space graph for the 4-disk Towers-of-Hanoi puzzle used as a substrate for livesolving by
drawing and co-drawing solution paths.  A shortest solution path (the "golden path") is shown.

solution path involves some counterintuitive moves of disks from right to left now and then.  Thus, there is
an opportunity for livesolvers to develop skill at solving these puzzles and demonstrate the skill using this
mode of livesolving, much as Rubik-cube experts like to show how quickly they can spin the faces from a
random position and get all the marks on each face of the cube to have a uniform color.

One of the challenges for those who formulate problems is to come up with appropriate graph layouts (that
we call problem-space visualizations) to permit this sort of solving by drawing.  Finiteness of the problem
space is a help, but that is not sufficient to make such layout easy.  We discuss the challenges of layout
further in the section on Livesolving in Infinite Problem Spaces.

4.3 "States-Alive" Liveness

In a puzzle such as the Towers of Hanoi, each state represents a static snapshot -- a possible configuration of
disks on pegs that might reached in the course of attempting to solve.  A static image is a suitable graphical
representation for a solver working on the problem. On the other hand, there are problems that involve
dynamic entities, such as the problem of designing an animation clip or creating a computer program that
simulates bouncing balls on a table.  With states alive, each state displayed in a solving session is backed by
its  own  generative  process,  typically  a  running  program  operating  in  a  separate  thread  of  control.
Particularly  when  the  solver  is  comparing  alternative  states  in  order  to  select  one  for  additional
development, seeing the alternatives, "in action" can potentially improve the quality of the decision and
have other benefits, such as making more apparent the properties of the states, not only for the solver, but
for a livesolver's audience, if there is one.

One of the simplest examples of states-alive liveness occurs when the problem is to design an animated GIF
image,  and alternatives are displayed in  their natural  form -- as  animated GIFs.   An obvious potential
drawback is that such displays, with multiple animated GIF images, can be annoying to users, because they
tend to be visually busy and distracting, especially when the important decisions about which state to



expand,  etc.,  have already been made.   The answer should  be that  the states-alive facility  comes with
suitable controls for disabling and enabling the live displays that go with such states.

The use of separate threads of computation to support each of multiple states being shown simultaneously
on the screen could easily consume available computation cycles or memory.  Thus it is likely to work best
when relatively few states will be displayed in this mode at a time.  Finiteness of the problem space may
help, at the very least, and policies or controls that limit the number of live states to a dynamically changing
working set,  would be appropriate.   For  example the live displays may be limited to one state and its
immediate children, or to the states along one short path in the state-space graph.

4.4 Live Feedback During Solving

Crucial to maintaining a sense of flow to a user is providing timely feedback.  In problem solving with
CoSolve, the system generates a state display image each time the user creates a new state.  With solving by
drawing, the user should be receiving at least two forms of feedback: the display of the path as just drawn,
plus the state visualization for the state most recently reached on the path.  The time between user selection
or specification of a new current state and its subsequent display is "state-display latency." By reducing this
time to a few milliseconds, a system can better support a solver's  experience of being in the flow. The
finiteness of the problem space suggests that the state visualizations could all be precomputed and stored as
properties of the nodes of the graph.  This would allow showing these visualizations with low state-display
latency, even if the user draws paths through the graph quickly.

In addition, feedback about the current node reached may include the display of values computed from the
state:  heuristic evaluation function values,  for example.   Even if these values or the state visualizations
themselves are not precomputed, they may be computed lazily, scheduled for computation as soon as the
node is added to a path under consideration.  Yet the livesolver is not required to wait for them before
exploring  further.  When  computing  resources  are  scarce,  these  visualizations  should  be  computed
strategically, to maximize the sense of orientation in the state space.  For example, every other state along
the path might be displayed if not every state can be.

5. LIVESOLVING IN INFINITE PROBLEM SPACES

5.1 Working with Parameters of Operators.  

If the states of a problem have continuous variables in them, such as a temperature or speed, then the
problem's state space is inherently infinite1.  The space could be made finite by limiting such variables to a
fixed set of values, but that may not always be appropriate.  A consequence of having continuous variables
in operator parameters is that the selection of appropriate parameter values can easily become a "flow
killer" in a problem solving system.  In order to avoid this, live parameter tuning should be supported.  To
use this, a user selects an operator and the system may respond by creating a new state using default values
of the parameters.  At the same time, controls such as sliders, dials, or image maps appear, as appropriate for
each of the parameters required by the operator.  The user then adjusts the parameter values, watching the
new state update immediately to reflect the adjustments.  A variation of this involves having the system
present not just one new state, but a sample set of new states corresponding to a default set of values for
each of the parameters.  For example, an operator that adds a piece of furniture to a living-room layout may
have three parameters: furniture type, x position, and y position.  The x and y positions are values from a
continuous range; the system can provide a sample set of (x, y) pairs that are generated as a cartesian
product of a sample set for x with a sample set for y. 

1 Of course, real number are restricted in most computers to a finite set of rationals, but this is an artifact of
implementation rather than problem modeling.



In addition to the use of default parameters and fixed sample parameter vectors, intelligent agents may take
a solver's specification for a sampling distribution to use as the basis for parameter value sampling.  An
example of this is the specification of a "beam" of parameter values: a collection of tightly spaced values
within a narrow subrange of the parameter's full allowable range. 

5.2 Ancestor Modification

A variation of the live parameter adjustment affordance when creating new states (as described above) is to
permit this in more cases.  One of these is to change the parameters of an old state.  If the state has no
children, this is equivalent to what we have already discussed.  If the state has children, then these children
will generally be affected by any change to this or any ancestor.  For each descendant of a modified state,
any of several cases may apply: (a) no change, either because that influence of the change is blocked by
some  other  ancestor,  between  the  changed  one  and  the  descendant  in  question,  (b)  changes  to  the
descendant propagate down, with no violations of operator preconditions on the path between the ancestor
and the descendant, or (c) at some state between the ancestor and the descendant, the precondition for the
operator originally used to create the state is now violated.  In this third case, the logical update to the
session tree is to remove the subtree whose root's operator precondition now is violated.  However, that can
be quite disruptive to the solving session, particularly if that deletion happens as an unintended accident of
parameter adjustment.  Flow may be better maintained by avoiding the possibility of such an accident.  This
can be done by automatically cloning any ancestor that has been selected for modification, along with all its
descendants.  If this policy is too expensive in terms of state duplication, a less costly cloning policy is to
clone only when a descendant is about to be deleted, and then to remove the clone if the parameter is
adjusted back in a way that removes the precondition violation. While ancestor modification complicates
the implementation of the system, it offers substantial flexibility to the solver, allowing the "resurrection of
otherwise unmodifiable states from the dead."

5.3 Path Drawing Without Precomputed Graphs

A problem space that is infinite cannot have its entire graph realized in advance or at any time.  However, a
portion of it may be computed in advance, and more of it may be computed during a solving session.  The
following challenges may arise:

The time required for the system to apply an operator and produce a new state may cause enough latency to
threaten the user's sense of flow.  When this is the case, the sense of liveness can sometimes be saved by (a)
suitable display of  partial  information,  progressively as  the new state is  computed,  or  (b)  covering the
latency by posing questions to the user or offering more readily available alternatives.

The mapping of states to layout positions may cause collisions among realized states.  While the Towers of
Hanoi graph of Figure 2 has a clear minimum spacing between adjacent nodes, in an infinite problem space,
this may be difficult, if not impossible to achieve.  The fact that parameters of operators, and state variables
themselves, may take on values in continuous ranges (e.g., real numbers between 0.0 and 1.0), means that
states may differ by arbitrarily small differences in any state variable.  If the designer of a problem-space
layout wishes to have a minimum separation of nodes on the screen of 25 pixels, then two fairly similar
states s1 and s3 might be positioned at x1 = 100 pixels and x2 = 125 pixels, respectively.  If s1 and s3 differ
simply because there is a state variable v whose value in s1 is v1 and whose value in s3 is v3, (where v3 - v1 is
close to zero), there still may exist a state s2 having its value of v half way between v1 and v3.  Now where
should the layout place the display of s2?   It could dynamically adjust the layout and double the spacing
between s1 and s3,  in  order  to  place  s2 directly  between them without  violating the  minimum spacing
constraint.  However, this raises the problem of layouts changing during the solving process, which may
increase the cognitive load on the solver.   If layout positions are not to change during the session, then



collisions on the screen are likely, as the realized portion of the infinite state space grows, and interface
mechanisms are required to allow seeing and selecting any of the items that pile up on each other.  One
approach for this is  to have multiple layouts or projections,  with the user in charge of moving among
different views of the same problem space.  Another approach is to allow the layout to be locally dynamic,
with techniques such as force layout, but overall mostly static.

Hand-in-hand  with  more  sophisticated  visualization  techniques  for  the  problem  space  are  more
sophisticated capabilities for the drawing tool supporting the livesolving.  As the user draws a path through
the 2D view of the problem space, the path must intelligently adapt to be a legal path through the actual
problem space which may be of arbitrary dimension.

System policies supporting intelligent drawing assistance may include on-the-fly search, so that the state
pointed to by the solver is automatically connected by a shortest path to the nearest landmark state, unless
the distance from such a state exceeds a threshold set in the current drawing policy.  Landmark states are
defined by the solver by clicking on them and marking them during the course of solving.  Another drawing
policy that can be used is for the system to deal with drawing ambiguity (i.e., which state the user intends to
move to next) by maintaining a set of nodes to represent the possible next state; the ambiguity may be
gradually removed through additional user hints, or the 

  
(a)                                                                            (b)

Figure 3. Visualizations for the Climate Conundrum problem:  (a) session tree, and (b) problem-space graph.
The graph layout supports solvers' understanding of progress towards the goal, but it is poorly suited to path
drawing, due to its densities of nodes and edges.

ambiguity may be permitted to persist, with the understanding that the system will eventually end up with
multiple possible candidate solution paths.

Even if a problem-space visualization fails to provide a clear sense of direction or sense of proximity to any
landmarks in the problem space, the ability to explore the space by drawing a path can still have appeal to
livesolvers.  At the very least, a graphical representation of the paths explored can provide a kind of visual
session  history  whose  topology  (e.g.,  tree  structure)  indicates  alternatives  tried  and  points  at  which
backtracking or branching occurred.

5.4 Effects of Dynamic Realization of the Problem Space.

Real-time solving with full state displays may be impractical, due to high state-display latency in complex
problems.  To keep the solver in the flow, it may be possible to use techniques such as (a) planning via
homomorphic problem spaces (Pearl 1984), (b) low resolution visualizations on fully computed states, or (c)



sampling  policies  for  visualizations  –  e.g.,  every  other  state  on  a  path  is  visualized,  or  every  nth  is
visualized, or a state is visualized to degree  f(k) if its importance exceeds  k.  Alternatively, visualizations
may be computed lazily with different priorities, so that with enough time, a full path is shown in detail, but
rapid  work  by  a  human  will  be  supported  by  having  the  most-important  visualization  and  state-
computation work performed first.

6. SOCIAL LIVESOLVING
In this section, I discuss three of the aforementioned livesolving forms: synchronous co-solving, livesolving
presentations, and driving an agent.

6.1 Synchronous Co-solving 

Synchronous co-solving is  collaborative solving activity in which a single representation of the solving
session is shared among the solvers.   When solvers work from geographically distant locations, the shared
representation is accessed via client views that must be updated by the system. CoSolve's mechanism for
these updates pushes notifications to solvers that changes have been made and then updates a solver's view
if and when the solver clicks to request the update.  Our new system Quetzal, on the other hand, pushes the
new views themselves as soon as any team member makes a change.  The potential exists for such changes
to be disrupting to individual solvers,  as, of course,  too many cooks can spoil  a broth. This is  true for
groupware in general (Gutwin et al 1995).  But were synchronous co-solving not to be supported, close
collaboration would be more difficult. We compensate, in Quetzal, for the potential disruption, by smoothly
animating each of the changes to the session-tree view over a 2-second period.  The potential disruption can
also be reduced by clearly labeling incoming nodes as new and identifying their authors using avatars,
names, or color coding.

If a solving environment gives to agents the status of "team member," then the potential for disruption is
amplified.  Agents can move too quickly to create new material in a solving session, and also, there is a high
likelihood of  their  work being considered  to  be  mostly  garbage.  Consequently,  special  affordances  are
required for managing the contributions of agents, such as running them in sandboxed subsessions.  New or
novice team members can also be managed with such devices.

6.2 Livesolving Presentations 

Livesolving presentations share several elements with livecoding performances. First, the presence of an
audience demands that there be an effect element of communication during the activity; the audience is
expected to derive something from the experience, be it entertainment, education, or other information.
Furthermore, livecoding is traditionally improvisational.  In order for livesolving to also be improvisational,
the  tools  must  support  extemporaneous  decision  making  and  short  response  times.   In  music,  live-
performance improvisation involves real-time commitment to musical elements that cannot be retracted
(unlike studio recording session in which mistakes can be corrected). A jazz musician who hits a "wrong"
note (wrong in the sense of unintentional or off-sounding) will typically turn this bug into a feature by
developing it, recontextualizing it, and perhaps, gracefully abandoning it.  A livesolver who arrives at a dead
end in the problem space should likewise make the bug into a feature by building a narrative context around
the dead-end that makes it a natural part of exploring the problem space. The audience might judge the
performance either in terms of speed to solution or in terms of "narrative richness" or honesty in exposing
the solvers'  thought process.  Computer support for this form of livesolving may include the display of
graphical signals to the audience that new states are being explored (e.g., green) backtracking is occurring
after reaching a dead-end (red) or that unforced backtracking is occurring (e.g., orange).  Music livecoders
often include colored code highlighting in their  editors to reflect  re-evaluation,  syntax errors,  or  other
conditions.



6.3 Driving an Agent

Driving an agent is listed here under social livesolving, but it may or may not involve relationships that feel
social.   The relationship  between a  driver  and  a  car  is  not  traditionally  a  social  one.   However,  with
automatic driving, the user and driving agent may have a relationship involving communication in spoken
English, which may seem social.  Other social relationships in driving exist, too: driver-navigator, driver-
backseat driver.  In the case of direction-finding, the navigator in a car may be a person or a Garmin GPS
unit.  In livesolving, agents may be making decisions about the order in which states of a problem space are
explored,  but  a  user  driving that  agent  may steer  the  agent  to  alter  the default  decisions.   When the
operators take parameters, the choice of parameter values may be a large enough task that it can be shared
by multiple drivers.  One livesolver determines the type of furniture to be placed in the living room while
another selects an (x,y) position for it by clicking or touching on the room plan.  Computer support for
driving an agent means offering interfaces to livesolvers appropriate to the particular kind of agent being
driven.

7. DISCUSSION
In this section I address three questions.  First is "Where did the forms of livesolving come from?".  The
second is "What can make solving live?"  The reason to ask this is to offer a review of issues already raised,
but in a slightly different light. Third is "How does livesolving compare with livecoding?"  This question is
prompted by the theme of the conference.

7.1 Where did the forms of livesolving come from?

After  our  group  built  two tools,  TSTAR and CoSolve  in  order  to  facilitate  deliberate,  human problem
solving, the question arose of what more we could do, through providing computer technology, in order to
support human problem solving.  Our two approaches involved (1) looking for ways to reduce latency in
our current computer-mediated solving process, and (2) looking for alternative kinds of solving experiences
that could be supported by the same classical theory and underlying support engine.  The ideas took shape
in the course of trying to answer the other two questions in this section.

7.2 What Can Make Solving Live?

Solving a problem, with help from others, including computers, can feel live when the solver experiences
the kind of feedback expected when working among a group of engaged individuals.  Having a conversation
in which one's partner responds promptly and thoughtfully is  one example.   Working with a tool  that
performs its assistance without undue delay is another.  The goal of our work is to enable solvers not only to
experience liveness, but to achieve cognitive flow -- a state of mind in which mental transitions from one
idea to another proceed at a rate that is fast enough to inhibit distractions from setting in, yet slow enough
to permit comprehension and the development of good judgment.  The seven forms of liveness presented
above offer some means to this end.  However, there are surely many other factors that affect the ability to
achieve flow that crop up in reality such as the solver's freedom from external anxieties, the time available,
his  or  her  motivation to solve  the problem at  hand.   We also require  that  the  problem be  formulated
according to the classical theory, and the formulation process is a topic for future work.

7.3 Comparing Livesolving and Livecoding

Livesolving and livecoding, as presented here, are closely related.  An obvious difference is that livecoding
depends on code editing as its fundamental activity.  Livesolving depends on problem-space exploration via
operator application.  From a theoretical perspective, they are equipotent.  Livecoding in a Turing-complete
language can result in an arbitrary computable function.  Livesolving in a suitable formulated problem space
can result in the composition of an arbitrary computational object, such as any computable function.  Either



can be done in a performance context, and either can be used to generate music or any other computable
process.  The difference, then, is in the style of interaction that the solver or coder has with the system.  The
ways of thinking about the process, also, tend to differ.  In a typical livecoding performance, there is not any
goal to end up with a masterpiece of code at the end of a performance; rather the code evolves in order to
generate the music required at each point in time, and at the end of the performance, the final version of the
code may simply generate silence.  In livesolving, however, there usually is an understood goal state, and
there are criteria for success and failure related to it.

8. CONCLUSIONS
Problem solving using computers is an activity similar to programming in that it involves computational
thinking,  yet  different from programming because of  the structures  and affordances typically provided.
Exploiting the classical theory of problem solving, existing systems such as the University of Washington's
CoSolve facility have shown how computational resources can be used by human solving teams to solve
problems in ways that garner certain advantages.  These systems, however, don't adequately support solvers
in reaching their full potential as solvers. Here, I have presented seven forms of liveness in problem solving
to help overcome those obstacles.  Some of these forms involve how solvers specify the exploration of the
problem space, while others involve the ways in which they interact with other solvers on the team or with
an audience.  Future work on livesolving will involve evaluation, comparisons to software design patterns,
extensions to posing, the design of agents and agent interfaces, and enabling the scaling of facilities for
large teams, complex problems, and more intelligent and fast computational support.
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ABSTRACT

Modular synthesiser live-patching has gradually been accepted into the big-tent of live coding practice, due to a number
of natural similarities to computer-based live coding. ese similarities especially include flexibility, complexity and
sudden stops. In my own performance of live-patching, I have sought out other areas of digital live coding practice
to apply to the modular synthesiser. ese include starting from a blank slate, showing my cables (sometimes with
projection), graph changes and the use of conditional triggers to create audio events.

1. Introduction

e definition of live code has been gradually growing over the years of contemporary practice. In 2008, McLean strug-
gled to name any non-digital live coding practice. (McLean 2008)en, in February 2011, there was a very brief discussion
on the TopLap email list as to whether live patching modular synthesisers was an analogue form of live coding (Rohrhu-
ber 2001). By June of that year, Nick Collins was treating the question as seled in Leonardo, listing live electronics band
Loud Objects as an example of live coding. (Collins 2011) He notes, when talking about live algorithms, ‘Computers
remain a primary touching point, but let us also keep in sight examples that center on human rule-making independent
of digital computability.’ (Collins 2011) Given this very broad potential pool of music-making activity, live coding has
become extremely inclusive. or Magnusson referred to ‘herding cats’ in the title of one his papers, as a reference to
this wide diversity. (Magnusson 2014) Indeed, I heard a joke recently that it would be faster to make a list of all the things
that aren’t live coding, rather than the things that are.

2. Synthesiser as a Live Code Platform

Given how open live coding has become, it may become useful to discuss points of commonality between divergent live
coding practices. In many ways, live synthesiser patching seems different from live coding with a computer, given the
vastly different interface. ere is a greater amount of tactility, which, to me at least, feels closer to playing a traditional
musical instrument than creating an algorithm. It is also worth noting that the synthesiser is specifically designed for
music making, unlike a computer, and thus has a limit on the kinds of operations and calculations it can do. In this way,
a synthesiser is both a chainsaw and an idea. (TopLap 2010)

us chainsaws vs ideas become less of a binary opposition and more a continuum. Tools, such as chainsaws, are
perceived as extensions of the body of the user. (Cardinali et al. 2009) My experience of playing the tuba very much
matches this. By contrast, my experience of text-based computer live coding feels abstract and unembodied. Live-
patching the synthesiser lies in between. e afore-mentioned tactility does give it some feelings of embodiment. But
plugging in cables and deciding how to route signals primarily involves abstract decision-making. Playing a patch,
therefore, is chainsaw-like. Making the patch is idea-like.

2.1. Commonality

A modular synthesiser, therefore has many points of similarity with digital live coding practice. e specific design
of a synthesiser for only music making may not parallel computer hardware, but the specificity certainly parallels the
way some live coding languages have developed. While you can’t use your synthesiser to check your email, this is also
impossible in several live-coding languages and with early analogue or other non-digital computers. And, indeed, the
modular synthesiser does have a general purpose element within the musical sphere. Common practice, when I was an
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undergraduate, was to spend time in the studio, carefully making the perfect sound. is is also how I was taught to
write code.

Historically, modular synthesisers do not seem to have been seen as live electronics systems to the same extent as were
some particular pieces, such as Runthrough by David Behrman (1971), which is realised live with DIY electronics. e
programme notes for that piece state,

No special skills or training are helpful in turning knobs or shining flashlights, so whatever music can
emerge from the equipment is as available to non-musicians as to musicians . . .. ings are going well
when all the players have the sensation they are riding a sound they like in harmony together, and when
each is appreciative of what the others are doing (Behrman 1971).

e piece is based entirely on discovery and has no set plan or wrien score (ibid). e piece-ness relies on the equipment.
Scot Gresham-Lancaster describes pieces like this one as “direct use of electronics as a ‘score’ ” (Gresham-Lancaster 1998).

Historical live electronic pieces like Runthrough do differ from live-patching in that a modular synthesiser is designed to
be a more general purpose tool and its use does not imply a particular piece. Interestingly, however, some live coding
platforms, like ixi lang, have been compared to graphic scores due to their use of space (Magnusson 2011) and thus do
have a certain piece-ness about them. However, unlike ixi lang and Runthrough, understanding the interaction between
synthesiser modules is not designed for ease of use for non-musicians. It is a specialist skill which does imply that
expertise is possible. However, the idea of finding a sound and following it is similar to live electronics and all of these
practices make use of improvisation. ese are all points of commonality between live patching and digital live coding.

Additionally, the interface differences between modular synthesis and computer languages do not create as large a gap as
it might at first seem. While synthesiser modules are not like text-based code, neither are all languages. Scheme Bricks,
a live coding language by Dave Griffiths (2012) is an example of a coding language that relies very heavily on graphic
elements rather than dense lines of text. A step closer to the synthesiser patching interface (and not uncoincidentally
so) are the patching languages MAX/MSP and Pd. A version of one of these languages which had only a set and limited
number of unit generators and control generators would not be logically different than a modular synthesiser. Even the
model of making connections is the same.

2.2. Complexity

Both digital systems and analogue modular systems allow a user to create a graph of unit generators to generate sounds
electronically. In both systems, the graphs and their control mechanisms can quickly grow in complexity, past the point
where the player can easily understand what is happening. e late Click Nilson hints at this in his 2007 paper. In
a footnote, he quotes a personal communication from Julian Rohrhuber, ‘e main difficulty of live coding I find is to
keep aware of the relation between text and sound - this is a balancing act between the ability to change and the ability
to understand a certain situation’ (Nilson 2007) While certainly live patching lacks text, there is some critical number
of patch cables beyond which it becomes increasingly difficult to keep all the connections in mind. Patch cables turn
into a kind of electronic spaghei, where even the colour codes of my cables are not helpful in comprehending what is
connected to what. I aempt to compensate for this by physically tracing my hands along the wires, but even that has
its limits. Given the extreme flexibility for feedback and chaos with analogue signals, the routing can become intensely
complex. Pd programmers are familiar with a similar effect of a visual spider web forming on screen.

is complexity also leads to a situation analogous to ‘crashing’, wherein the synthesiser suddenly stops making sounds
in performance, in a way that can be difficult to predict. Experimenting with an oscillator’s ‘hard sync’ switch during a
set may lead to a sudden and interesting timbre change or a sudden silence. Similarly, long running LFOs can drop below
a threshold where they unexpectedly cause things to fall silent. It is oen not at all obvious what has caused the sound
to stop. In situations where there are a large number of wires and multiple modes of interconnected sound-generation,
it can be more beneficial during performance to treat a sudden, unexpected silence as a stopping point and start anew
with new sounds aer a brief pause to remove cables.

Although it would be impossible to exactly replicate a previous live patch in performance, I do sometimes try to repeat
steps that have lead to a ‘crash’ in past situations, as they make a sudden and final-sounding way to end. I’ve seen
many digital code-based live coders end sets through crashes and at least some of them do court disaster on purpose.
Click Nilson has wrien of the desirability of a ‘”code out” ending of deliberate coded crash’. (Nilson 2007) And some
live coding languages have embraced crashes as language functionality. ixi lang, for example, has a built-in ‘suicide’
command, which creates a percentage chance of crashing on each bar. (Magnusson 2012)



3. TopLap Influences

Many of the points of similarity above are inherent in live patching, due to a synthesiser’s evolution from the analogue
computer. However, the courting of crashes is one way in which my practice has been specifically influenced by the live
code movement and the TopLap Manifesto in particular. (TopLap 2010)

3.1. Show us your screens

Like blank slate digital live coders who start positioned behind a laptop with a blank screen, I start with all of my patch
cables hung around my neck. us we both experience a short pause from starting the set to starting making sound. I
also emulate the ‘show us your screens’ directive, so I turn my synthesiser at an angle to the audience, so the majority
of friendly experiencers can see my actions to at least some extent. is orientation is a compromise position such that
my instrument is largely visible, but I am not turning my back on the audience. For many lines of sight, it is probably
more visible than simply standing in front of the synthesiser. I have experimented also with using a web cam to project
a video image of the synthesiser as I patch.

In order to make things more transparent, at the Live Code Festival in Karlsruhe in 2013, I paired this with a manually
triggered set of slides of super-imposed text. ese started with a description of what colour cable I intended to use for
what kind of signal. Copying the Royal Conservatory of the Hague’s coding system, I projected that I would be using blue
for Control Voltages, black for Audio Voltages and red for Triggers. In addition, I projected the name and a photograph
of the module that I was using when plugging into it for the first several connections I made.

While audience feedback was generally positive about these good intentions, it was difficult to find a web cam angle that
was not blocked bymy body as I used the instrument. Evenmore disappointing, the combined low quality of myweb cam
and of the projector meant that the different cable colours were not visible to people watching the video display. In low
light situations, such as one oen has on stage, black cables oen become completely invisible. Although a beer camera
may solve colour issues, I have instead reconsidered what information I should be giving to audiences. AlthoughMcLean
notes that programmers can take steps such as ‘using a language with a simplified syntax, choosing highly descriptive
variable names and so on’, (McLean 2008) I have never seen a show-us-your-screens live coder project any explanations
as to their syntax colouration or what various commands mean.

3.2. Graph Changes

When discussing approaches to digital live coding, Magnusson writes,

e argument . . . is that a true ‘liveness’ requires that the performer is not simply manipulating pre-
wrien code in real time, but is actually writing and modifying algorithms during the execution of the
program. is is arguably a prerequisite of live coding, as simply running code and changing parameters
in prewrien code is more comparable to operating buons, sliders, and knobs on a screen interface or a
MIDI controller. (Magnusson 2014)

is demand for algorithm modification also appears in Collins’s live coding analogues, wherein he describes several
examples of changing the algorithm mid-play. In one such example, specifically, ‘a live-coding twist would be to perturb
the algorithm halfway through’. (Collins 2011) Perhaps, however, it would be useful to take a step back and examine
what is meant by ‘algorithm’ in an analogue context.

Plugging in cables creates a unit generator graph. e output of one circuit is connected to the input of another, eventually
creating a complicated sound generation and control process. is is the creation of an algorithm, just as combining unit
generators in a patching language creates an algorithm. However, playing this patch, by twiddling knobs on a synthesiser
is exactly like operating knobs on a MIDI interface. Indeed, the physical interface is ‘pre-wrien’. is is not to say that a
physical interface is necessarily alien to live coding. Marije Baalman’s live-coded piece, Wezen-Gewording, uses sensors
aached to her hands, to capture the physical gesture of her specifically performative gestures and of her typing code.
(Baalman 2014) However, seing something up and relying solely on parameter changes, while musically valid, is dubious
under the heading of ‘live coding.’ erefore, Baalman changes her code over the course of the piece. And in my practice,
I do not rely on the algorithmic rules established at the start of the set. Instead, I ‘perturb the algorithm’ by seing up
and switching to parallel signal paths.



Figure 1: An image I projected in Karlsruhe.



3.3. Decisions

Many computer programs involve decision making. is is not strictly necessary for audio processing, which only needs
follow a signal graph. However, I seek to include decision making in my patches, in order to create stronger similarities
to coding practice. My synthesiser includes a MOTM 700 voltage controlled router – a module that specifically does
binary signal switching based on a comparison of two signals. However, although this module is an obvious choice for
seeking to automate some decisions, this kind of behaviour is also found via triggers and envelope generators. When
one signal changes, this changes another signal. is seems roughly analogous to an if statement. Because I oen use
both random generators and FM chaos, I cannot always predict when a trigger will occur. us the synthesiser picks
up a degree of autonomy and behaves in an unpredictable way, increasing a distance between it and a chainsaw. e
instrument may be a tool, but a patch is more like an expression of an idea. (TopLap 2010)

3.4. Seduling

Many live coding languages offer the possibility of scheduling future events and some have argued that this is therefore
a necessary component of live coding or live coding-related practice. In essence, this is a situation where the performer
decides to invoke or stop a particular algorithm at a future time. A synthesiser user who wishes to mimic this behaviour
has several options, including step sequencers or using LFOs to trigger future events or graph changes. Aswith deccisions,
one can make the timing less predictable by using random generators or chaos. is is not something I tend to use either
in my live coding or my live patching practice, but is certainly possible to implement.

4. Conclusion

While discussing live coding metaphorically, McLean wrote, ‘We can think of live coding in the sense of working on
electricity live, re-routing the flows of control . . ..’ (McLean 2008) In modular synthesiser patching, this practice is not
a metaphor. Flows of control are literally plugged and unplugged. Complex systems develop and are replaced by new
complex systems. It’s no longer necessary to retreat into our imaginations to experience live coding without a computer.
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ABSTRACT

In this work we present the SuperCopair package, which is a new way to integrate cloud computing into a collaborative
live coding scenario with minimum efforts in the setup. is package, created in Coffee Script for Atom.io, is developed
to interact with SuperCollider and provide opportunities for the crowd of online live coders to collaborate remotely on
distributed performances. Additionally, the package provides the advantages of cloud services offered by Pusher. Users
can share code and evaluate lines or selected portions of code on computers connected to the same session, either at the
same place and/or remotely. e package can be used for remote performances or rehearsal purposes with just an Internet
connection to share code and sounds. In addition, users can take advantage of code sharing to teach SuperCollider online
or fix bugs in the algorithm.

1. Introduction

Playing in a live coding ensemble oen invites the utilization of network capability. Exchanging data over the network
facilitates collaboration by supporting communication, code sharing, and clock synchronization amongmusicians. ese
kinds of functions require live coding musicians to develop additional extensions to their live coding environments. Due
to the diversity of the live coding environment and the collaboration strategies seled for performances, implementing
such a function has been tailored to meet some ensemble’s requirements. In addition, networking among machines oen
requires additional configuration and setup, for example, connecting to specific machines using an IP address. In order
to overcome these constraints, our goal is to realize a platform that facilitates the collaboration among live coders with
minimal efforts of configuration, utilizing cloud computing.

ere are many advantages to replacing a traditional server-client system with a cloud server. First of all, the collabo-
ration scenario could be extended to the live coding ensemble whose members are distributed over different locations,
enabling a networked live coding performance. Not only does this enable telematic performances, but it will also make a
live coding session take place in a distributed manner, which will change the rehearsal process of live coding ensembles,
whether it is remote or co-located. In addition, using the cloud server minimizes the amount of setup needed for net-
working as long as each computer is connected to the Internet. e amount of setup required is equivalent to creating a
shared document in a Google Drive.

To that end, we present SuperCopair, a package for the Atom text editor, that offers code sharing and remote execution
over the Internet. In this paper, we introduce the background that the idea is built upon, articulate our motivations for us-
ing cloud computing, and describe the implementation of the system. Finally, we suggest multitudes of new performance
practices enabled by the system.

2. Networked collaborative live coding

Networked collaboration in live coding was present from the inception of live coding where multiple machines are
clock-synchronized exchanging TCP/IP network messages (Collins et al. 2003). Many live coding ensembles also uti-
lize network capability to share data and communicate within the ensemble (Collins et al. 2003; Rohrhuber et al. 2007;
Brown and Sorensen 2007; Wilson et al. 2014; Ogborn 2014a). However, most of the time, they are based on the local net-
work communication and not designed for remote collaboration aempted in the tradition of Network Music. Remotely
connected music systems not only create a number of unique challenges and aesthetic opportunity as a performance in
public, but also provide a base for musicians in different localizations to collaborate over the network synchronously.
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Telepresence performance recently emerged as a new collaboration practice in live coding. Swi, Gardner, and Sorensen
(2014) conducted networked performance between two live coders located in Germany and United States using an SSH
server located in Australia. Extramuros, a language-neutral shared-buffer, is a web-browser based system to share code
among connected machines (Ogborn 2014b). Gibber, a live coding environment on a web browser, supports collaborative
editing and remote execution similar to Google Docs (Roberts and Kuchera-Morin 2012). Commodity sowares (such
as Google Docs, CollabEdit, or DropBox) can be useful for remote collaboration and are convenient since users do not
need to perform any configuration. However, these systems were either not designed or offer at best limited support for
remote music performances.

3. Designing a collaborative solution

Although in the past it was difficult to think of thousands of people interacting at the same time on a musical system,
the actual situation is in the quest of the best way to use the services and technologies offered day aer day. For the
last several years, we have witnessed an impressive advancement in the quality of services of cloud computing systems.
Cloud servers distributed worldwide are connected through fiber optic broadband, and its cloud services have many
advantages for computer music and collaborative works. We are taking some benefits from these characteristics in this
study.

e cloud computing suggests itself as the next logical step in network capability, ready to be used for musical applica-
tions and performances. ‘CloudOrch’ is one of the first aempts to utilize the advantages of cloud computing in musical
ways (Hindle 2014). e idea was to deploy virtual machines for client and server users, create websockets for intercom-
munication, and stream audio from cloud instruments to both desktop computers and mobile devices using web browsers.
e author dubbed his idea ‘a sound card in the cloud’ and presented latency results from 100 to 200~ms between the Cy-
bera cloud and the University of Alberta, Canada using the HTTP protocol. Using cloud computing as opposed to using
server-client option has multiple advantages. Once an online instance is configured, a user can connect to or disconnect
from the cloud at any time and can share the same resources within a group of connected users and take advantage of
the reliable and scalable resources provided. Indeed, this solution can be useful for live coding network music.

e authors had already discussed models and opportunities for networked live coding on a past work (Lee and Essl
2014). e paper introduces diverse approaches in networked collaboration in live coding in terms of the type of data
shared: code sharing, clock synchronization, chat communication, shared control and serializable data (such as audio).
We draw upon ideas of existing systems that enable ‘code sharing’ and ‘remote execution’ re-rendering program state
by evaluating code fragments in both the local machine and the remote machines in many live coding environments and
extensions (Brown and Sorensen 2007; Rohruber and Campo 2011; McKinney 2014; Roberts and Kuchera-Morin 2012).
ese systems are similar in the sense that they need a separate server installed and configured by their users.

It is a general trend to have soware application distributed over the Internet. Cloud computing is the central tool to
realize the distributed sowares. However, the use of cloud computing is underdeveloped in computer music and we
believe that it is the next logical step to put computer music applications in the cloud as a mean to realizing network
music. e cloud computing provides a set of services that are beneficial to scale the computer music performance. For
example, we can imagine a small scale ensemble co-located in the performance space, in which case the cloud computing
will create a virtual machine based on the data center nearby the performance location. In the opposite case where large-
scale participants are expected on a collaboration session, the cloud service will easily scale its computational power,
network traffic bandwidth and storage space automatically to meet the spontaneous needs, although it will have some
monetary cost.

In terms of network latency, we have achieved, an average round-trip time of 230~ms between Brazil and United States,
and a minimum of 166~ms (Carvalho Junior, eiroz, and Essl 2015). ese tests were done using mobile devices con-
nected to Pusher, a cloud service described below, but it can be extended to almost any device connected to the Internet.
e strategy of transferring code (textual data) and re-rendering the program state remotely instead of streaming audio
makes the latency less critical particularly for the scenario of live coding. However, it should be noted that the sound
outcome from local machines and remote machines may not have exactly the same sound for many reasons (e.g., latency,
randomness, asynchronous clock, packet loss).

e use of cloud computing resources became easier aer the introduction of some cloud services that create an abstrac-
tion of the cloud computing set up and offer simple APIs for users, as we can find on Pusher. Pusher offers a cloud
computing service that delivers messages through web sockets and HTTP streaming, and support of the HTTP Keep-
Alive feature. e service has a free plan with some daily limitations such as 100,000 messages and a maximum of 20
different clients connected. Another limitation of the free plan is that we can only exchange messages through the US-
East cluster server situated in Northern Virginia. e paid plans are more flexible and they make possible to have more
users connected, send more messages, and use other clusters. In spite of that flexibility, all plans have a hard limit of 10
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messages per second for each user. is limitation is due to the overhead of message distribution among a thousand users,
but it really suits most needs to common use cases. Every message has a size limit of 10 kilobytes, but one can request
an upgrade if larger messages are needed. Although it has limitations, we do not need to set up any cloud instance to
benefit from the cloud computing infrastructure provided by this service.

e service works with push notifications, so every message sent is going to be received by all devices assigned to the
same channel. A SuperCollider programmer can evaluate the whole code, a selected part, or just a line using keyboard
shortcuts. SuperCollider programming language supports real time audio synthesis and is used extensively by live coders.
ese characteristics turn the language very suitable to be used with a push notification cloud service.

4. SuperCopair

e solution presented in this paper was created as a package to the Atom.io IDE. Defined as ‘a hackable text editor for
the 21st Century’ on its site¹, Atom is a text editor created using web technologies and has its development powered by
the github community. is IDE has numerous packages for many programming languages and presents some solutions
for coding, debugging, and managing projects. Atom packages are programmed in CoffeeScript, which is a programming
language that can easily be converted to Javascript and can also integrate its libraries. e developers can install Atom
packages to enable various functionalities in the IDE such as: communicate through chats, use auto-complete in certain
programming language syntax, interact with desktop and web applications, integrate with the terminal command line,
and havemany options based on other packages. ese features havemotivated the development of SuperCopair package
for Atom.

SuperCopair is based on two Atom packages: atom-supercollider and atom-pair. e first package turns Atom.io as an
alternative SuperCollider IDE and permits users to openly communicate locally with SuperCollider audio server through
OSC in the same way we can do on SC-IDE. Moreover, the users can take advantage of other Atom packages additionally
to quarks packages. e laer package is used for pair programing through the Internet. e atom-pair package is based
on Pusher cloud service and its default configuration is based on the community free plan, but a user can modify the
seings and use the user’s own keys within the personal free or paid plan.We decided to merge both packages to add
new features for collaborative live coding, and finally had dubbed it the SuperCopair package.

e main idea is that all participants have the opportunity to evolved into a collaborative performance.

e IDEs for SuperCollider have, by default, shortcuts to evaluate a line, a block, and to stop all sound process that is
running. In addition to these options, the SuperCopair package includes methods and shortcuts to broadcast these events
and execute them on all users connected at the same pairing session. rough the shortcuts, one can decide to evaluate
selected code either only in the local machine, or in all computers of the session. One can also turn on and off a broadcast
alert option in the seings in order to be asked or not before evaluating every broadcast event sent by another user in
the same session. is allows each individual has control over which code to be evaluated in the local machine.

e broadcast events are diffused through the cloud service and are expected to be evaluated as soon as each device
receives the event message. e message includes the code to be evaluated and the user identification. A representation
of a session using SuperCopair package is shown at Figure 1.

4.1. Paage installation and use

One can have the package properly installed and ready to be used in two different ways. Via the Seings View in Atom.io,
the user can search and install the package. It is also possible to install the shell commands during Atom.io setup and
use the line below to install the package:

apm install supercopair

Aer the installation, the user needs to start a new session before inviting others. An instructional step-by-step setup is
presented on the package page. en one can get initiate a performance by opening a SuperCollider file and starting a
pairing session. e session ID string needs to be shared with collaborators so they can use the string to join the same
session.

e shared session ID is based on the channel created at the cloud service and it contains application keys. It is recom-
mended to change the app keys aer each session. As the keys are linked to the account used during the performance,
other participants can use the keys for other activities and the number of events will deducted from the main account.

¹Atom.io website: hp://atom.io/
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Figure 1: Example of a session using SuperCopair and the architecture of interactions. e central bullet is the localization of
the cluster server in Northern Virginia, and the other bullets represents users connected to the cloud server. e screen has the
code on the le and SuperCollider post window on the right. e architecture presents only two users but it can be replicated
to many, with diffusion on Pusher cloud service.



e users who joins later will see the most recent version of the shared code. e users are identified by different
color markers, and they can identify what each member is writing on the file based in these colors. A pop up provides
information about users joining or leaving the session. Furthermore, a message including the identification of the user
and also the code evaluated is shown at SuperCollider post window right aer each broadcast event is evaluated. In case
the broadcast alert option is on, a dialog will appear whenever an event message is received from another and ask if the
user would accept or reject the code evaluation. e alert dialog will have the sender’s id and the code sent via broadcast.
When a live coder leaves the session, he or she can keep the most recent updated file to save or edit offline.

e delay achieved on the free plan depends on the distance between every member and the US East Coast cloud server.
is free plan from Pusher cloud service allow 20 different clients per day on the same session and 100 thousandmessages
per day, however we have higher limits on paid plans. e session will stop aer reaching the daily limit of messages for
all plans, but the daily quota is reset aer midnight UTC. It is important to keep these details in mind while facing any
problem or high latency. e user may want to try a paid plan to have distributed data center, clients more than 20, and
larger sized messages.

4.1.1. Shortcuts

eusers have some special shortcuts depending on the operating system, and they are related to these specific functions:

• Compile library (open post window if needed)
• Clear post window
• Evaluate selection or current line locally
• Panic ! Stop all music
• Broadcast a code evaluation to everyone (including onesel) in the session
• Broadcast a code evaluation to others (excluding onesel).
• Broadcast stop command to everyone (including onesel) in the session
• Broadcast stop command to others (excluding onesel).

ese shortcuts can be used to interact with other participants during a performance. e broadcast methods will only
be shared with users on the same session, so it is also possible to create multiple sessions and interact with different
crowd teams at the same time using a distinct Atom.io window on the same computer.

4.1.2. Practices and performances

e authors aempted to test the application multiple times in the co-located setup and also tried remote sessions by
recruiting SuperCollider users. From one of our practices, there were live coders from Ann Arbor, MI, and San Francisco,
CA, in U.S., and also São Paulo, SP, and Fortaleza, CE, in Brazil. During the session, participants (including the author)
shared the session ID using an Internet Relay Chat (IRC) channel and we had a brief discussion about the package before
starting to code. Some users reported that it could be dangerous to use headphones if we had switched off the alert for
broadcast events, because some user may send a louder code to be synthesized. In the end, the session is successfully
carried out without many problems and we are on the improvement of the package based on comments and suggestions
from the participants. Atom.io installation was cumbersome for some users of Linux due to recompilation requirements
at some distributions, and a step-by-step guide is under construction. Additionally, Mac users need the newest versions
of the system in order to install Atom.io, but the users can also use a virtual machine with Linux and get rid of this
limitation.

e practice addressed above is to simulate a networked live coding performance where multiple remote performers join
a SuperCopair session from each one’s our location, that may not be the concert space. In the local concert space where
the audience is, a laptop connected in the session is placed without a performer on stage. Each performer would evaluate
code in broadcast mode so that the computer on the stage will generate the collection of sound that remote live coders
make via the Pusher. At this performance, the spectators at the local concert hall may have a wrong impression about
the performance in the beginning because there is no one on stage except the laptop. As the audience will watch the
video projection of the laptop screen, they will understand the main idea of remote performers live coding locally, from
the multiple concurrent edits and some live coders’ explanatory comments shown on the editor.



5. Discussion and conclusions

Here we present advantages and opportunities enabled with SuperCopair in network live coding: remote collaboration,
telematic performance, and crowd-scale networked performance. One interesting advantage of the application is that
it supports remote pair programming. We have witnessed that users can teach the basics of a language each other or
help in bug fixing using online pair programming. Beginners can invite someone from anywhere in the world for a
pairing session and start coding together on the same file and also synthesize the same code in real time while learning
some tricks about live coding. Additionally to the forums and mailing lists, one can invite professionals to help on fixing
algorithms for audio synthesis and have another kind of experience like pair or group programming on the same code
to come up with a solution collaboratively. is package supports only SuperCollider namespace, but in the near future
we can have similar packages for Csound, Chuck, or any other computer music programming language.

SuperCopair also offers novel forms of networked performances based on message streaming. e work of Damião
and Schiavoni (2014) is a recent aempt to use network technologies in order to share contents among computers for
a musical performance. e authors send objects and strings through UDP using OSC and can control other machines
running the same external on Pure Data. ey opted for UDP andMulticast to get beer results onmessage distribution if
compared to TCP and broadcast, which usually include three way handshaking and relay server. Although their decision
has been based on solid arguments, our solution takes advantages of HTTP persistent connections using a single TCP
connection to send and receive messages, and we also bring a reliable option for broadcast delivery using cloud services
capabilities.

e package presented in this paper can be extended as an alternative for other networked live coding APIs. One can
cite the Republic quark package that is used to create synchronized network performances. and the extramuros (Ogborn
2014b), a system for network interaction through sharing buffers of any kind of language. e last solution needs to
be configured depending on the language andit does not present any easy way to share control (e.g. stop synthesis on
SuperCollider) at the moment. Another constraint of both solutions is the need to create and configure a server on one
computer to receive connections from clients, and additionally it would be necessary to open network ports or change
firewall seings before starting any interaction with remote users.

SuperCopair realizes accessible configuration of network music performances, utilizing the cloud services. ere is
no need to configure a server or manage any network seing, e.g. routing, firewall, and port. We expect that even
inexperienced users will be able to create a session with lots of people. As long as one can install the Atom editor and
the SuperCopair package, the creation and participation at remote performances become an easy sequence of one or two
shortcuts. Eventually, SuperCopair will simplify the steps to create a collaborative performance and remote rehearsals,
and be used by people without network knowledge.
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ABSTRACT

very long cat are a new network music duo combining tabla and live coding, rehearsing and performing via the Inter-
net, and employing an eclectic range of techniques and technologies. e specific structure of the ensemble’s network
music setup, with one musician live coding and monitoring their own performance with a calibrated delay, allows both
musicians to experience each other’s performances as synchronized. is poster focuses on the evolving technical con-
figuration of this hybrid ensemble, with an emphasis on the constraints imposed by the insistence on “zero latency” in a
live coding ensemble (some sound transformations are not feasible, and others are implemented in a characteristic way).

1. Introduction

very long cat are a new network music duo combining tabla and live coding (Collins et al. 2003), rehearsing and per-
forming via the Internet, and employing an eclectic range of techniques and technologies. e specific structure of the
ensemble’s network music setup, with one musician live coding and monitoring their own performance with a calibrated
delay, allows both musicians to experience each other’s performances as synchronized. is poster focuses on the evolv-
ing technical configuration of this hybrid ensemble, with an emphasis on the constraints imposed by the insistence on
“zero latency” in terms of the sound results (some sound transformations are not feasible, and others are implemented in
a characteristic way).

2. Tabla Traditions

e tabla is the most popular percussion instrument in India and is especially prevalent in the northern regions of the
country, as well as in Pakistan. e tabla is an integral part of North Indian (Hindustani) classical music, where it can be
performed solo, in kathak dance accompaniment, or to accompany melodic instruments (sitar, voice, violin, etc.). ere
are six different stylistic schools of playing (gharanas), many varied sounds and techniques, and a repertoire made up
of a multitude of cyclic and cadential compositional forms (Courtney 2000). e second author of this poster performs
tabla in the style of the Benares gharana.

In the Benares gharana, the art of solo tabla performance is greatly respected and very highly developed, with more
than twenty forms of composition in use, many of them unique to this tradition. e compositions can be broken down
into two main types: theme-and-variation forms which require spontaneous improvisation by the performer, and fixed,
composed pieces. In addition, there is a well-defined procedure and structure used for joining the various types of
compositions together to form a logical and pleasing performance. Repertoire and performance practices are handed
down from generation to generation through oral tradition (Shepherd). e North Indian tabla is connected with live
coding through the fact that both traditions, despite their very different age, are centred around the art of improvisation.

3. A ‘Zero Latency’ Network Music Configuration

It is in the nature of transmiing audio signals from one point to another that it takes time for them to arrive and be
decoded/transcoded. Our everyday audio computing infrastructure exacerbates this latency through multiple layers of
transmission and buffering. Latency is thus a central and perennial challenge of network music situations (Carôt and
Werner 2007; Whalley 2012) and has been the focus of a number of distinct research streams.

One stream of network music research seeks to characterize the effect of latency on network-distributed musical perfor-
mances. For example, a recent rhythmic clapping study (C. Chafe, Cáceres, and Gurevich 2010) involved pairs of rhythmic
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clapping performers separated physically and by carefully controlled delays ranging from 3 to 78 ms. e study revealed
the existence of four distinct impacts of bi-directional delay/latency on ongoing musical tempo. Between 10 and 21 ms,
tempo was stable, with a tendency to accelerate at lower latencies, a tendency to decelerate at higher latencies, and a
marked deterioration of synchronization at even greater latencies (66 ms and higher).

Other network music research “accepts” the inevitability of latency and constructs new performance spaces and expec-
tations around the specific temporal characteristics of the network (Tanaka 2006; J.-P. Cáceres and Renaud 2008). Some
systems even extend this acceptance of latency as far as measuring it and projecting it onto other parameters: e peer-
Synth soware reduces the amplitude of sonic contributions from particular network nodes as the latency to that node
increases, just as in acoustic transmission longer delays are produced by greater distances which also simultaneously
produced reduced amplitudes (Stelkens 2003). e Public Sound Objects system uses measurements of the latency to
adjust the overall tempo, motivated by the insight that longer latencies are more sustainable at lower tempi (Barbosa,
Cardoso, and Geiger 2005).

In the very long cat ensemble, we take advantage of the fact that one of us is live coding to sidestep the problem of
latency. Specifically, our configuration results in sonic events being aligned (synchronized) in the same way at both
ends of the ensemble. We call this absolute alignment of the audio layer “zero latency” although it should be recognized
that in terms of non-sonic elements of the overall performance situation, such as the interplay of actions and decisions
between the two performers, latency still exists. Additionally, instantaneous transformations of the live tabla sound
must be avoided if the “zero latency” audio synchronization is to be upheld. Even so, the experience of producing
tightly synchronized ensemble rhythms in apparent defiance of network latency and geographic separation is musically
rewarding, and represents a live-coding-specific “road less travelled” in network music practice.

Both performers in very long cat use jacktrip (Caceres and Chafe 2009) to send two channels of full-resolution, uncom-
pressed audio to each other. e live coding performer uses jacktrip to transmit the sonic result of his live coding, while
the tabla player transmits the signal captured by two microphones, one close to each drum. Aer much experimentation
with a number of high-end microphones, AKG C414 microphones were chosen, as they reliably capture the tabla’s sound
across a wide range of timbres. Each player monitors the signal they receive from the other player as soon as possible.

e tabla player simply plays along in sync with what he hears. However, the live coding performer monitors the
sounding result of their live coding at a small, calibrated delay equal to approximately the time it would take for network
audio via jacktrip to do a complete round trip between the two locations. It is as if the local monitoring of the live coding
were to line up in time with itself as transmied and then transmied back. Typically, this delay is 111 milliseconds,
a figure arrived at by playing identifiable beats together and adjusting the delay until the synchronization is aurally
pleasing. Essentially, this technique exploits the gestural ambivalence of live coding (intentions and results are not, as a
rule, tightly synchronized) to overcome the fundamental problem of latency in network music. e live coding performer
does not need to hear the results of their work immediately, and so can “afford” to monitor their work at a small delay.

During rehearsal and telematic production situations, our bi-directional stereo jacktrip connection is solid enough that
dropouts (brief periods of missing audio data) are quite infrequent and do not disturb our co-performance relation-
ship. However, these infrequent dropouts are frequent enough to damage recordings of these sessions. For this rea-
son, we record 4 channels of audio at both ends of the situation: each performer records the signals they are produc-
ing/transmiing as well as the signals they are receiving from the other player. e brief dropouts are only found in the
received signals, so a “perfect” recording can be reconstructed by combining the “local” signal from each player. In each
4-channel recording, the presence of the received signal acts as an indication and record of how time was aligned at each
performance site.

Both players use a Max patch that has been developed and maintained to provide for the requisite delay in monitoring (at
the live coding end of the ensemble) and the 4-channel audio recording. is Max patch, the live coding in SuperCollider,
and jacktrip are thus connected as follows:

4. Live Coding around Latency with Live Electronics

e live coding in very long cat is performed in the SuperCollider language (McCartney 1998). In general, the live coding
consists alternately of paern constructions in SuperCollider’s standard paern classes, or “modular synthesis” style
notation of live electronics using the JITlib notations advanced by Julian Rohrhuber and others.

A central technique is the “live electronic” transformation of the signal from the live tabla player. For example, the
envelope of the (stereo) live tabla signal can be extracted and then re-applied to synthetic sounds that are specified as the
result of oscillators, low-frequency oscillators, etc. e ensemble insists on only applying those techniques that allow
both players to experience the sonic results as synchronized in the same way. An immediate consequence of this is



Figure 1: Jack connections on the live coding end of the ensemble

that no immediate transformations of the tabla sound can be used, as the result of such transformations would not be
immediately audible to the tabla player at the other end of the jacktrip connection.

Instead, the transformations of the live tabla sound must always take effect at a delay. At a minimum, if the zero-latency
requirement is upheld, this delay must be equal to the round trip delay of the jacktrip transmission. In practice, however,
we tend to use delay times that are lined up to metric structures (like a beat at a normal tempo, or a bar, or longer).

In the SuperCollider live coding, the delay time has to be modified from the straightforward intended delay time on
account of the latency of the network music situation. For example, if the tabla player strikes the drum at a given time,
this arrives at the live coding end only aer a half-round-trip delay. Whatever the live coding performer sends back will
arrive at the tabla player only aer a further half-round-trip delay. us, in order to apply a delayed live electronic effect
to the live tabla player’s performance, the live coding performer must delay the input from the tabla by the intended
delay time minus a full round-trip delay time.

is modified delay is accomplished via a SuperCollider extension that is maintained specifically for the ensemble, with
has the added benefit of supporting theatrically-named class methods. is allows the projected code to accurately
display the intention of delaying the sound by a given metric amount, while concealing the modification to the delay
time that is made necessary by the network music situation:

*delay {

| signal,time |

^DelayN.ar(signal,time-roundTrip,time-roundTrip);

}

Given the preceding method in the VLCat class/extension, the following is an example of a simple sound transformation
whereby a delayed signal from the tabla player affects the envelope of a synthetic signal four beats later, with this
intention clearly signalled in the code (the 4/TempoClock.tempo, and experienced as a one-bar delay at both ends of the
telematic link:

~a = { LFTri.ar([440,550],mul:-20.dbamp) }

~b = { Amplitude.ar(Envelope.ar(VLCat.delay(~tabla.ar,4/TempoClock.tempo),0.1,0.01) }

~c = { ~a.ar * ~b.ar }

~c.play



5. Supporting Videos

Delay Study (February 2015): hps://www.youtube.com/watch?v=2gehI46oNvk

Groove Study (February 2015): hps://www.youtube.com/watch?v=2i9CG2Ayl8A
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ABSTRACT

e extramuros soware was developed to explore live coding and network music, bringing live coding musicians to-
gether around shared text buffers. Originally developed to support a globally distributed live coding ensemble, the
extramuros soware has found additional application in projecting laptop orchestra performances to remote sites, in
zero-installation workshop and performance seings, and in facilitating the efficient display of code by an ensemble.
As the soware works by connecting shared text buffers to audio programming languages through specific network
connections augmented by pipes, it is a language-neutral approach. is paper describes the overall architecture of the
extramuros system, relating that architecture to perennial network music concerns for bandwidth, security, and syn-
chronization. Examples of early use in workshops, rehearsals and performances by laptop orchestras and other small
telematic ensembles are discussed, leading to a concluding discussion of directions for future work.

1. Introduction

Music is deeply collaborative, and network music (Bischoff, Gold, and Horton 1978; Kim-Boyle 2009; Fields 2012) wherein
musicians of different types and genres collaborate (usually but not always over the Internet) is a burgeoning field of
research. e main currents of research include a focus on extending traditional musical performance over the network
(Alexandraki and Akoumianakis 2010), as well as exploring the network as an inherent part of a “new” instrument
(Gremo 2012; Cáceres and Renaud 2008). Live coding can also be deeply collaborative. Code is a highly efficient means of
communicating intentions, with efficiency potentially understood as any or all of efficiency in comprehension by a human
reader, efficiency in transmission over a network, or efficiency in translation into a sounding result. e extramuros
soware was developed to explore live coding and networkmusic, bringing live codingmusicians together around shared
text editing interfaces (“shared buffers”).

In the basic operation of extramuros, a server application is run on one computer. Some number of performers use a web
browser to connect to the server and edit shared text, with each person’s editing more or less immediately visible to all
the others. At any computer where the sounding result of the code is desired (for example, all of the individual laptops in
a globally distributed laptop ensemble), a client application is run that receives evaluated text from the server and sends
it to the audio programming language of choice over standard UNIX-style pipes. Anyone can edit anyone else’s code at
any time, and all code is sent to all listening clients (and thus, potentially executed on audio programming languages
connected to all listening clients).

As the extramuros system simply collects text that is piped to another application, it is “language-neutral”. is neutrality
is especially pertinent in the specific context of the live coding community, which uses a large and growing number
of distinct languages, with individual artists and researchers bringing forward new languages continually (whether as
ephemeral experiments or as more persistent pieces of community infrastructure). extramuros’ language-neutrality
allows it to be a site that brings together “partisans” of different languages, because their familiarity with the extramuros
web-based interface can represent a bridging factor next to their unfamiliarity with a given language. e extramuros
server does not evaluate or render any code, but rather just sends such text code back to the local clients that pipe it to
an existing audio programming language. us, as new text-based languages enter use, extramuros will continue to be
immediately useful with them. Both Tidal (McLean and Wiggins 2010),] and SuperCollider (McCartney 1998) have been
used heavily with current versions of extramuros.

mailto:ogbornd@mcmaster.ca
mailto:eldad.tsabary@concordia.ca
mailto:lostinthegroove@gmail.com
mailto:tiemposdelruido@gmail.com
mailto:alex.mclean@icsrim.org.uk


is paper discusses some diverse applications of extramuros, the system’s soware architecture and how that architec-
ture responds to some of the perennial challenges of network music, and then presents some qualitative feedback from
early workshop deployments. e paper concludes with a discussion of directions for future development of this, and
related, systems.

2. Distributed Ensembles and Other Applications

extramuros was originally developed with the intent of allowing a distributed ensemble of live coding performers to
rehearse, perform and learn together, connected by the Internet. It was first used in an ongoing series of “shared buffer”
performances with the language Tidal (McLean and Wiggins 2010), and then subsequently used in the first distributed
algorave (Collins and McLean 2014) performance (Colour TV, a.k.a. Alexandra Cárdenas and Ashley Sagar, at the 2014
Network Music Festival).

While supporting such globally distributed ensembles was the primary intent behind the creation of extramuros, the
approach taken here supports a number of applications or situations that go beyond this, including “projected ensembles”
and “zero installation ensembles”. e soware also allows for a comfortable relationship between large ensembles and
the live coding practice of sharing one’s screen.

2.1. Projected ensembles

While not the original target of development, extramuros can be used for the “projection” of an ensemble’s performance
to a second location. For example, a laptop orchestra (Trueman et al. 2006; Smallwood et al. 2008; Wang et al. 2008 )
whose performance practice involves routinely playing together in the same room, can perform through the web browser
interface, with the sounding result of that performance rendered both at their location and at another site, or sites.

e Cybernetic Orchestra at McMaster University (Ogborn 2012b; Ogborn 2014) employed this technique to participate in
the 2014 Network Music Festival in Birmingham, UK.e orchestra performed a live-coding roulee in SuperCollider on
a circular array of 8 loudspeakers, “projecting” the code from a closed location in Hamilton, Canada to the public festival
site in the UK. As only small pieces of text code were traveling from Canada to the UK, this projection of 8-channel audio
plus high resolution video required almost no bandwidth at all.

2.2. Zero installation ensembles

An unanticipated benefit of the approach taken here was the utility of extramuros in workshop and educational seings
where participants arrivewith diverse laptops lacking the specific audio programming environments used in the activities.
Because, in such seings, people are together in a room, only a single computer needs to have an appropriately configured
audio programming environment (and hardware) with the other computers accessing this through the browser interface.
Moreover, the utility of this zero-installation aspect of the approach is not limited to workshop and other “entry-level”
seings, but extends to any collective performance seing where quick and robust installation is required.

e Cybernetic Orchestra has taken advantage of this zero-installation aspect in at least three distinct ways: (1) to
give live coding workshops to members of the community, (2) as a way of geing new members of the orchestra live
coding during their first minute at a rehearsal, and (3) as a mode of performing together in public. In early February
2015, the orchestra performed at the world’s first ever algoskate, an event combining live-coded dance music as in an
algorave with ice skating. e orchestra’s 8 performers were distributed in a long line alongside a skating rink, with
each performer placing their computer on top of a large 200-wa, 15-inch sound reinforcement style speaker. All but
one of the computers were connected to a local area network via Cat6 Ethernet cables (run through the snow) with
the one computer connected to the network via Wifi. Because the event was part of a busy winter festival (the city
of Hamilton’s WinterFest) this outdoor setup had to take place very quickly (in less than an hour). e fact that the
members of the ensemble only had to open their computers and web browser freed their aention to run cables through
the snow to speakers and switches. During the algoskate, one member of the ensemble put on their skates, connected to
the orchestra’s network via WiFi and performed Tidal live coding on their smartphone (with zero configuration) while
skating around the rink, thus entering the history books as the first person to skate and live code at the same time!

2.3. “Show Us Your Screens”

In the above-mentioned algoskate, another benefit of the extramuros approach was on display (pun intended). e web
browser interface provides a single, unified visual method of sharing code with the audience. While the classic TOPLAP



demand to “show us your screens” is easy enough to make in the case of a solo or duo performer, it becomes more fraught
as the number of performers increase. When everyone is coding Tidal or SuperCollider through a shared web browser
interface, this interface provides a single visual object that can be shared with the audience, with no requirement for
elaborate or bandwidth-hungry network video compositing.

Figure 1: A typical extramuros browser window with 8 text editing regions

We can speculate that this type of application could have an impact on the evolution of live coding in large ensemble,
“laptop orchestra” contexts. While many laptop orchestras are connected in some way with live coding, few have made
it a central and defining activity. is could be in part because of the lack of an established practice of making a unified
visual experience of live coding activity with so many people. While systems like Republic (Campo et al. 2012)), Utopia
(Wilson et al. 2014), or EspGrid (Ogborn 2012a) allow performers in an ensemble to see what other performers are doing,
copy their code, etc, they don’t necessarily or inherently provide a unified visual focus and so performers tend to be in a
situation of guessing what the other performers are doing (until closer investigation through their system’s affordances
provides the answer). Without special care, this becomes a situation of laptop performers closeted behind their screens,
not fully co-present in the virtual space of the codework.

3. Network Music Challenges and Aritecture

Performing collaboratively in networked contexts raises many challenges. e extramuros architecture responds to
common network music challenges around security and timing/synchronization, while the fact that small pieces of text
and operations on text are the primary pieces of transmied information also makes the soware quite economical in
terms of bandwidth requirements. Before discussing the nature of these security and synchronization considerations,
it will be helpful to outline the architecture of extramuros in slightly more detail. e extramuros server and clients
are implemented in node.js. e share.js library (an operational transform library) is used for collaborative text editing,
with common web browsers providing readily available virtual machines for the collaborative editing of text code. e
0mq library is used for reliable and scalable connections from the single server application back to the, potentially quite
numerous, audio “render” clients. e rendering of code into audio results is out-sourced via UNIX pipes to external
audio programming languages:
When a performer edits any of the editable text regions provided in the browser by the extramuros server, this involves
back and forth communication between the browser and the server via websockets, mediated by the share.js library.
is ongoing communication ensures that all browsers who have that page open see the current state of all the editable
windows, and can potentially intervene and change them. When a performer clicks an “evaluation” buon next to any
given editable region, this triggers an HTTP request to the server application, which if successful, triggers the output of
text in the client application that is then piped to some audio programming language.

3.1. Security

Information security issues in network music come in two forms: sometimes common security measures represent obsta-
cles to the performance of networkmusic, while at other times it is required that networkmusicians implement additional
security measures in order to protect their performances.



Figure 2: Basic extramuros architecture diagram showing direction of data flow during editing and evaluation

Firewalls are a common obstacle in networkmusic performances, as the laer oen take place in institutional or domestic
contexts where access to the configuration of the firewall is prohibitive. In the case of extramuros, whose server listens
for incoming TCP connections, firewalls are rarely a problem when the server application is run at publicly reachable
location: all of the connections from other points/hosts to the server are “outbound” from the perspective of those
other points/hosts, and firewalls tend to be configured to allow outbound connections on arbitrary ports without special
reconfiguration. Provided a copy of the extramuros server is running somewhere, this allows potentially as many as all of
the working/rendering/listening locations to be behind home or institutional firewalls. (At the first public “shared buffer”
performance with extramuros, one of the performers was working on headphones at a café in a theme park, where one
has to presume there would be no possibility of negotiating a momentary reconfiguration of the firewall!).

Use of extramuros entails open access to a web page requires some security measures in order to prevent sabotage. For
example, on one occasion, an extramuros/tidal workshop was given to first year students at Concordia University in two
groups. Once Group 2 was live coding, a mysterious code was hijacking the music with selfish, intrusive sounds, which
were not generated by any of the participants. Apparently a mischievous student from Group 1 was having “some fun”
from an unknown location. Identity still unknown, he/she apologized anonymously in the chat window.

Security is addressed primarily through a rudimentary password system. e web browser interface includes a field to
enter a password. is password is included in the transmission back to the serverwhenever one of the buons to evaluate
code is pressed and the server quietly ignores any such evaluation requests that arrive without the correct password. If
no password is entered, an in-browser alert pops up to remind the performer to enter a password, a measure suggested by
early experiences, where reloading the browser window and forgeing to re-enter the password was a common mistake.

e current mechanisms do potentially open the door to security problems on the audio rendering/listening/client com-
puters, and more aention to the security implications of the system are without a doubt an important direction for
future work on the system. A part of the “solution” may be to establish practices and guidelines in each of the languages
used with the system so that languages are addressed in a “secure mode”, i.e. with no access to the file system outside of
a certain folder or set of user permissions.

3.2. Synronization

In the broadest sense, synchronization (i.e. latency) in extramuros is addressed by the fact that the same code is rendered
at each render location. Depending on the nature of the structures deployed, the result at each client location could be
more or less identical. When it is a maer of specifying paerns (in other words, quantized information at a relatively
low frequency) as in the case with typical uses of Tidal, in most cases the different locations will render the same thing.
ere is the possibility that a piece of code might arrive just before a cycle boundary (i.e. a quantization point) on a given
client machine and just aer the same boundary on another client machine, so that briefly people will hear different
things at each location. However, in a live coding context it is likely that a new evaluation will arrive a moment later
with a similar relationship to the cycle boundary and then the identity of the two listening experiences (at least as signals
at the DAC, not of course as identical acoustic and psychoacoustic experiences) will converge again.

In other code situations, without a high-level paern focus and quantization, it is possible for the signals produced to
diverge more. Consider, for example, the following SuperCollider/JITlib situation:

~a = { SinOsc.ar(0.1) } // someone makes a 0.1 Hz LFO on all render machines

~b = { SinOsc.ar(0.5) } // then a moment later, another LFO on all render machines

~c = { ~a.ar * ~b.ar } // then, the product of the two LFOs



e shape of oscillator ~c in the code above is highly dependent on the specific amount of time that elapses between the
evaluation of ~a and ~b. Depending on the use to which ~c is put, this could result in substantially different sonic results.
Collective live coding with the current extramuros architecture might take account of this dynamic by avoiding those
kind of interdependencies between synthesis nodes:

~c = { SinOsc.ar(0.1) * SinOsc.ar(0.5) } // should be very close on all machines

However, this represents a rather unnatural constraint, and suggests that fine-grained time synchronization mechanisms,
like EspGrid, could be quite important to the future development of networked live coding. Triggering code evaluation
in the browser could schedule a packet of code to be evaluated at a more precise moment in the short-term future, as
there are numerous situations where the sonic result can be quite different depending on small differences in the time of
execution of code:

~a = { SinOsc.ar(1000) }

~b = { SinOsc.ar(1000) }

~c = { ~a.ar + ~b.ar } //

In the example above, the spectral energy at 1000 Hz could go from doubled (effectively, energy of ~a plus energy of ~b) to
completely phased out, depending on a mere 0.5 millisecond change in the time of execution of ~b relative to ~a. At 5000
Hz, a 100 microsecond difference in time of execution (4 samples at 44100 Hz) can either double or eliminate the energy.
e implementation and use of sample-accurate networked synchronization methods thus has a special relevance to
projects like extramuros, that mirror the execution of code to multiple points.

Precise mechanisms for the controlling the logical time of execution of code, however, will not exhaust the broader
question of coordinating the state of distributed machines. When code is executed in an extramuros browser window
that calls upon any form of pseudo-random generator, the behaviour of the multiple client languages in the extramuros
network will diverge. Intuition suggests that this is the type of challenge (i.e. random processes distributed over net-
work architecture) that may ultimately be addressed by new languages designed from the ground up around the idea of
collaborative, networked editing.

4. Workshop Feedba

On several occasions, electroacoustic (EA)majors at Concordia University (Montréal) live-coded in Tidal with extramuros
in pedagogical seings, including a first year EA studio class, a second year EA ear training class, and a Concordia Laptop
Orchestra (CLOrk) session. In an anonymous survey conducted with CLOrk members aerwards, students commented
that live coding in this seing was “logical” and “flexible”, that it produced “instantaneous results”, and that it had “almost
limitless potential” for “collaborative, digital expression” and “possibilities for composing [that] are quite vast.” Students
also commented in the survey that this experience was “fun” because it “produced sound right away,” but that their
ability to express themselves was between “very limited” to “none at all”, due to their inexperience with text-based
programming. A student noted, “It would take a lot of time to feel flexible or expressive.” (is response is, of course,
a response not only to the extramuros interface but also to the initial experience of programming audio operations in a
text-based environment.)

According to students’ survey responses, thisminimal expressive ability also led tominimal interactive ability in their first
extramuros/Tidal tryout. Nonetheless, the visibility of the shared code on every laptop screen succeeded in generating at
least some interactive engagement, as evident in these students’ survey comments: “it was interesting to have ensemble
code-visibility” and “viewing the code of others gave me ideas about what gaps to fill, or when to be quiet.” Commenting
on musicality, students noted that the effortless synchronization “worked” and that it was “a big plus.” One student felt
that “abrupt entrances were annoying,” which were likely due to the inability to hear the code until it is evaluated. e
student proposed that “some type of auditioning options” could be useful.

e majority of the students commented favorably on the effects of this first experience on their interest in live coding.
Comments ranged from simple approvals, such as “it’s prey cool,” “it has great potential,” and “Yeah, I would totally try
it again” to insightful realizations such as “Yes, I never had a special interest towards live coding, but now I realize the
amount of focus and the interesting symbiotic relationship with code.” While acknowledging the practical advantages
of the zero installation and quick access allowed by extramuros, students asked to be tutored through the installation
process in order to be able to practice at home and be more prepared, expressive, and flexible in upcoming group sessions.



5. Conclusions and Future Work

A major limitation of the current system is that it provides lile in the way of feedback on the success or failure of code
evaluations, or other states of the audio rendering environment (for example, audio levels). To remedy this, a mechanism
is being created whereby arbitrary Open Sound Control messages arriving at the (single) server application, will come
back to all of the web browser environments as calls to a JavaScript stub function. is should allow the development
of distributed error messages, visual monitoring of audio levels, as well as more sophisticated forms of visualization of
collective live coding activity.

It is quite common in the community that currently exists around extramuros for informal communication, during re-
hearsals and performances, to take place in an IRC channel or other external chat mechanism, but these mechanisms
are not always strongly visible/present to participants. While the extremely spartan nature of the soware has helped
it to come into existence and support a number of artistic outputs, in the longer term the facilitation of communication
and co-presence is doubtless an area of the soware where considerable improvements could be made. Depending on
the performance context it may be desirable to have video, audio, and/or data streams from each of the collaborators
(Akoumianakis et al. 2008).

e language-neutrality of extramuros, based on the use of text code, is a project strength, and enables it to be used with
diverse live coding communities, and also potentially as a thread bridging those communities. At the same time, text
code comes with all kinds of cognitive demands that could be lessened through the exploration of structure editing tech-
niques. ese could be incorporated into extramuros without sacrificing the underlying language-neutrality in the form
of something like the Emacs “major modes” for given languages, with the various structure constraints and affordances
all calculated in the browser, and plain text still distributed to the audio rendering/listening clients as in the present
architecture.
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ABSTRACT

Dance music superstar Deadmau5 and the improvising guitarist Derek Bailey represent, through their writing and prac-
tice, two very different approaches to performing live. By critically considering the practice of live coding in relation
to these divergent approaches, we discuss live coding with regards to where the liveness lies and how the laptop and
soware are treated as a musical instrument. Each practice uses the laptop as a musical tool in a very different way. Live
coding uses the laptop as an instrument in a manner that draws upon the techniques and strategies of free improvisation,
in contrast to Deadmau5’s notion of laptop as playback device and the live performance as spectacle. We discuss Dead-
mau5’s practice in relation to Francisco Lopez’s notion of the possibilities of electronic performance, and ideas about
labour and liveness.

1. Introduction

In this paper, we will explore the practice of live coding in relation to two very different but related practices: the
performance practice of dance music “superstar” Deadmaus, and the “non-idiomatic” free improvisation discussed in
particular by British guitarist Derek Bailey in his book Improvisation: its Nature and Practice in Music (Bailey 1993).
For the former, the “live” show is a synaesthetic, perfectly coordinated, precisely pre-planned immersive audio-visual
experience in which the performer simply presses “play”, whereas for the laer, the “live” show is continually composed
in real-time. Sketching a continuum between these two practices provides a way of framing the practice of live coding.
Doing so shows live coding as having more in common with ‘traditional’ instrumental practices which focus on an
instrument and a performer on stage, engaged in real-time composition, than the live performer as a channel for a
spectacle that is epitomised by the practice of Deadmau5. In particular, approaches to instrumentality found in free
improvisation are present in live coding.

Deadmau5 is of interest to us given his prominent place in contemporary, popular electronic music combined with his
controversial stance on the role of the musician in live performance, while Bailey’s performance method and writing
about free improvisation, although not electronic, match the declared intentions of many live coders and therefore pro-
vide a background for understanding improvisation and its relationship to the “live” in live coding. We see Bailey as
an authority on what a certain ‘pure’ idea of liveness and improvisation, which provides a valuable contrast with Dead-
mau5’s idea of live performance. Deadmau5 realises different notions of live electronic music practices that combine an
almost Wagnerian spectacle with a dismissal of many traditional notions of virtuosity and instrumentality that might
be construed as unnecessary in electronic music. In a sense, Bailey and Deadmau5 strive for opposite aims: Deadmau5
wants complete predictability and repeatability, a play buon that always plays the same perfectly composed thing,
whereas for Bailey each performance is a real-time composition seeking freedom from idiom and even the whole of mu-
sical history, and his practice rallies against that hypothetical play buon. Neither of these aims is ever achievable, but
they provide useful extremes within which to understand the practice of the live coding laptop musician.

ese two views of a live performance form poles on a continuum of aitudes and ideologies of liveness, performance
and musical instruments, upon which we can place and analyse live coding. Drawing on this, we suggest the follow-
ing. Live coding situates the laptop as an instrument and locus of real-time composition bearing many similarities to
‘traditional’ instruments, and with the explorations of these instruments practised in relatively free improvisation. Live
coding typically bears few similarities to the practices of Deadmau5, who treats the computer in a performance as a
reproduction tool rather than a compositional one, despite possible aesthetic similarities (and frequently a relationship
to dance music and dance music culture) that the two share.
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2. Liveness

By examining this aforementioned continuum, it can be seen that while a designation of “live” in either case indicates
performer activity as an event is underway, the type of activity in which the performer engages – composition or facili-
tation of spectacle – varies tremendously. e events we discuss can all said to be “live” yet in very different ways, and
thus a worthwhile discussion of “liveness” can take place. Auslander has wrien an important contemporary text on
liveness, which draws on Baudrillard, using the word “mediatized” in a fashion he describes as:

loosely… to indicate that a particular cultural object is a product of the mass media or media technology.
“Mediatized performance” is performance that is circulated on television, as audio or video recordings, and
in other forms based on in technologies of reproduction. Baudrillard’s own definition is more expansive:
“What is mediatized is not what comes off the daily press, out of the tube, or on the radio: it is what is
reinterpreted by the sign form, articulated into models, and administered by the code”. (Auslander 2008, 5)

is supports the view that rather than being a polar opposite to “mediatized” (as inAuslander (Auslander 2008; Auslander
2000; Auslander 2006)), designations of “live” are used to declare that a performer is active in some way in front of an
audience, with the following consequences:

1. Liveness can be based on the prior perception of performer activity or decision-making. 2. Live-
ness and mediatization can co-occur. Live laptop music involves the performance of the mediatized.
Mediatization may in fact amplify perceptions of liveness. From this viewpoint, audiences call some-
thing ‘live’ when they feel aware of performer decisions, typically but not always manifest in explicit
physical activity in the moment of the performance… (Bown, Bell, and Parkinson 2014, 18)

While older music technologies like violins might be construed as not being mediatised (even though they may be used to
repeat andmediate a score), digital music technology is almost completely entangled with the technology of reproduction.
Live coding is nearly always mediatised, explicitly so according to Baudrillard’s definition, in so far as the laptop and
code are commonly conceived and used as technologies of seamless reproduction. Soware abstractions are precisely
tools for the reproduction of certain behaviours in the computer. In the typical case, it uses the media of code, samples,
synthesisers, and projection, yet its practitioners and audience have lile doubt about it being characterised as “live”.
Considering liveness then from the view of activity, it remains to determine what type of activity is taking place. e
liveness in live coding is fulfilled through a performer’s activity in generating the sound, rather than a performer’s
presence as a figurehead in a spectacle.

3. Deadmau5 and Liveness in Contemporary Electronic Dance Music

Deadmau5, despite the name, is neither dead nor a rodent, but a very successful DJ and producer, known for his large-
scale immersive live shows, over which he presides wearing a huge mouse head. For many, Deadmau5 may be seen as the
epitome of everything that is wrong with Electronic Dance Music, and the embodiment of a particularly North American
strand of ‘stadium’ dance music that is far away from the evasive “underground” spirit that many value. However, whilst
practitioners involved might claim there is a great stylistic and artistic gulf between Deadmau5 and live coding, there
are also many similarities. Both an algorave live coding event and a Deadmau5 concert are events held at night, oen
in clubs, where one of the performer’s main intentions will be to make an audience dance, through the production and
manipulation of electronic sounds triggered or synthesised by a laptop (Collins and McLean 2014). Regardless of any
value judgements about the aesthetics or practice of Deadmau5, we believe that he cannot be dismissed and in his practice
and blog posts we find a very interesting idea about liveness in contemporary electronic music.

On his tumblr (Zimmerman 2013), Deadmau5 famously declared “We all hit play”, going on to say, “its no secret. when it
comes to “live” performance of EDM… that’s about the most it seems you can do anyway.” He explains the mechanics of
his live set-up, informing us that he can do some ‘tweaking’, but structurally most of his set is predetermined, premixed
and tied in with queues for lights and video:

heres how it works…. Somewhere in that mess is a computer, running ableton live… and its spewing out
premixed (to a degree) stems of my original producitons, and then a SMPTE feed to front of house (so tell
the light / video systems) where im at in the performance… so that all the visuals line up nicely and all the
light cues are on and stuff. Now, while thats all goin on… theres a good chunk of Midi data spiing out



as well to a handful of synths and crap that are / were used in the actual produciton… which i can tweak
live and whatnot… but doesnt give me alot of “lookit me im jimi hendrix check out this solo” stuff, because
im constrained to work on a set timeline because of the SMPTE. Its a super redundant system, and more
importantly its reliable as FUCK! […] so thats my “live” show. and thats as “live” as i can comfortably get
it (for now anyway)¹

He trades off spontaneity for reliability: the best laid plans of Deadmau5 rarely go awry. In doing so, he diminishes the
possibility to demonstrate his own personal virtuosity, but interestingly to us this seems to be of lile concern to him,
and he even goes on to be actively dismissive of claims and displays of virtuosic live electronic performance;

Im just so sick of hearing the “NO‼! IM NOT JUST DOING THIS, I HAVE 6 TABLES UP THERE AND I
DO THIS THIS AND THIS” like… honestly. who gives a fuck? i dont have any shame in admiing that for
“unhooked” sets.. i just roll up with a laptop and a midi controller and “select” tracks n hit a spacebar.

For Deadmau5, what is important is not the ability to virtuosically do these things live and in real time, but the artistic
processes involved in the composition and production of these tracks, and the immersive live show involving all the
spectacles of lights and videos:

my “skills” and other PRODUCERS skills shine where it needs to shine… in the goddamned studio, and on
the fucking releases. thats what counts.[…] you know what makes the EDM show the crazy amazing show
that it is? you guys do, the fans, the people who came to appreciate the music, the lights, all the other
people who came, we just facilitate the means and the prey lights and the draw of more awesome people
like you by our studio productions. which is exactly what it is.

We could link this to the electroacoustic “tape music” tradition, where a “live” performance traditionally involves the
playback of fixed media with some live spatialisation for the event; we could also link it to rock or even opera through
the focus on the spectacle. Deadmau5 declares:

“im not going to let it go thinking that people assume theres a guy on a laptop up there producing new
original tracks on the fly. becausje none of the “top dj’s in the world” to my knowledge have. myself
included.”

Deadmau5’s approach is met with suspicion by many, especially those who want to see a musician actively doing some-
thing - effectively labouring - on stage, and for whom “liveness” might be signified by perceived performer activity in
the area of composition. is does beg the question: at precisely what historical point did we expect our composers to
be adept performers of their music anyway? e divisions between composer and instrumentalist are still alive in well
in the world of classical music, and whilst there may be many problematic value systems and divisions of labour that
accompany this, at least the role of composition is valued.²

Deadmau5’s live sets blur the already murky distinctions between a “live” set and a “DJ” set (distinctions which we
cannot fully explore here), and Deadmau5 suggests that most large scale electronic dance music performances operate
along similar lines. e artist plays their original compositions, perhapsmixing andmodifying parts, but doesn’t compose
new material in real time, and whilst the well established and traditional musical spectacle is alive and well, traditional
ideas of instrumental virtuosity are discarded.

4. Derek Bailey and Improvisation

At the other end of the spectrum to Deadmau5’s joyously unashamed play-pressing, we find the musical practice of free
improvisation. e free improvisation to which we refer emerged primarily in the United Kingdom in the 1960s from a
nexus of workshops and regular concerts. ese include the regular sessions by the “Joseph Holbrooke” trio of Derek
Bailey, Tony Oxley and Gavin Bryars above the Grapes in Sheffield, the improvisation workshops run by John Stevens
in Ealing College, West London, the London Musicians Collective, the work of AMM and Cornelius Cardew, and the
Spontaneous Music Ensemble sessions at the Lile eatre with John Stevens, Trevor Was and Paul Rutherford. Free

¹We have not corrected the spelling or grammar used in the blog post.
²e issue of labour is treated further in the last section of this paper.



improvisation drew on diverse musical sources including but not limited to American free jazz (in particular Ornee
Coleman), the American avant-garde of Cage and La Monte Young along with the European avant-garde of Stockhausen.
Histories of the influences on free improvisation, its early days and its position in Western music history are traced in
Sansom (Sansom 2001) and Prevost (Prévost 2001).

Free improvisation is clearly not fully represented by the ideas and practice of the sole figure of Derek Bailey, but as
a practitioner, and one who wrote about and spoke articulately about his practice and his lifelong relationship with a
musical instrument (the guitar), he remains a pioneer and a useful figurehead for the purposes of our discussion. Bailey’s
book Improvisation: its Nature and Practice in Music was first published in 1980 and remains a canonical and widely
referred to text on the subject of improvisation. It is still one of relatively few texts discussing the ideas and ideals of
“free” improvisation (as opposed to jazz improvisation, though the scope of Bailey’s book does also go beyond said “free”
improvisation).

Bailey introduces improvisation in the following way:

Defined in any one of a series of catchphrases ranging from ‘making it up as he goes along’ to ‘instant
composition’, improvisation is generally viewed as a musical conjuring trick, a doubtful expedient, or even
a vulgar habit (Bailey 1993).

He goes on to say of “free” improvisation that: “It has no stylistic or idiomatic commitment. It has no prescribed idiomatic
sound. e characteristics of freely improvised music are established only by the sonic musical identity of the person or
persons playing it.” (Bailey 1993, 83). He calls it the oldest musical practice - for the earliest aempts at sound producing
by humans presumably had no idiom or structure to be constrained by - and describes it as a recent movement emerging
from a certain questioning of musical rules.

Whilst in the early days of free improvisation a lot of work was undertaken to escape musical idioms and convention
- experimenting with escaping meter or regular tonal structures, for instance - we are drawing on free improvisation
because it is a practice which foregrounds process and an immediacy with instruments and musical materials. Real time
interactions and an explorations of the sonic possibilities of whatever musical materials are at hand take importance
over the strict following of a score and the ability to reproduce seamless, identical versions of a piece of music that has
already been wrien. We will see ways in which a similar focus on process, interaction and exploration of materials is
is also brought to the fore in live coding.

In free improvisation, the instrument is re-imagined as a pure expressive tool, capable of generating a whole range of
sounds unbounded by notions of what music should or shouldn’t be, and how the instrument should or should not be
used. is might be achieved through practice leading to general mastery and the honing of advanced techniques such
as circular breathing amongst woodwind players, but it might also be achieved by an amateur who is lucky enough
not to be conditioned by years of training to think that, for example, a guitar shouldn’t be played with a toothbrush.
Bailey speaks of “the instrumental impulse”, which is quite separate from the act of playing in terms of score-following
that many musicians might do. Discussing instrument-playing amongst non-improvisers, he notes, “[creating] music is
a separate study totally divorced from playing that instrument” (Bailey 1993, 98). Improvisation explores the musical
affordances of an instrument and begins with the instrument, not the score. For Bailey, the instrument “is not only
a means to an end, it is a source of material, and technique for the improvisor is oen an exploitation of the natural
resources of the instrument (Bailey 1993, 99)”. When Bailey says “[the] accidental can be exploited through the amount
of control exercised over the instrument, from complete - producing exactly what the player dictates - to none at all -
leing the instrument have its say” (italics our own) (Bailey 1993, 100), he could quite easily be talking about live coding,
the use of generative algorithms, and the exploration of what a laptop and coding environment has to ‘say’ musically.
ese are the “natural resources” of this novel instrument.

5. Improvising with Computers

Free improvisation and the practice of Derek Bailey may seem an unusual bedfellow for computer music. e polemical
biography of Derek Bailey uses the computer as an example of the antithesis of the permanent revolution of Bailey’s
playing. We are told that “what he plays is more consistently surprising than anything constructed on a computer: it
happens in real time.” (Watson 2004, 1) and that “nothing is quite as dull and boring and dead as knowing precisely what
is going to happen - whether that is listening to computerised electronica…”(Watson 2004, 2). Elsewhere it is clear that
the author has a more nuanced view of computers and creativity, but still, we see the computer being situated against
the freedom and unpredictability of Derek Bailey. As we will argue, live coding makes specific efforts to reframe the
computer as an instrument, as opposed to a machine of mediation, construction and predictability, and there is a whole
history of using computers as unpredictable musical tools and even improvising agents.



George Lewis has been working on improvising with computers since the 1980s (Lewis 2000; Lewis 1999). Lewis’s work
places particular emphasis on the computer as improviser, moving more into the realms of artificial intelligence and
researching “independent computer agency” (Lewis 1999, p.108) than many live coders. To an extent, his work explores
whether we can treat the computer as a musician rather than as musical instrument. As he notes, in his most well
known computer music piece Voyager “the computer system is not an instrument, and therefore cannot be controlled by
a performer. Rather, the system is a multi-instrumental player with its own instrument,” (Lewis 1999, p.103). Nonetheless,
he is a pioneer of bringing computers into the sphere of improvised music and offering an alternative view of the musical
role of the computer to that of the predictable sequencer. Other examples of improvising with computers which predate
the live coding on which we focus in this paper would include the work of “e Hub” (Gresham-Lancaster 1998), Robert
Rowe’s interactive systems (Rowe 1999) and the work of Joel Chadabe (Chadabe 1984), to name but a few. Whilst these
are all important in a historical framing of laptop improvisation and live coding, we will not discuss them at any length
here as we wish to remain focused on the specifics of live coding: namely, real-time implementation and writing of code,
and the projection of this code so the audience can see it, for it is here that the unique qualities of the practice emerge
and we see the way in which the instrumental capacity of the laptop is explored.

e computer-as-instrument, and ways for expressively improvising with computers, is also widely explored in what
we refer to as the New Interfaces for Musical Expression (NIME) field, where aempts are oen made to extend the
computer allowing for gestural control through accelerometers, biosensors and other means. One survey of this is found
in (Miranda and Wanderley 2006). is is a field to which whole conferences (such as the New Interfaces for Expression
Conference, the proceedings of which are another reference for any further investigations) are dedicated, and live coding
oen finds a comfortable place within this field. Again, it is outside the scope of our writing here to engage with much of
this research, and we focus on live coding where very lile aempts are made to extend or improve the input capabilities
of the computer to make them more expressive: instead, the inherent, unadulterated affordances of keyboard, mouse
and code are harnessed. Audience legibility is explored less through gestural legibility that through the projection of the
performer’s screen.

6. Live Coding

We will now draw on the practices of Deadmau5 and Bailey to examine some aspects of the practice of live coding. We
define live coding as “the interactive control of algorithmic processes through programming activity as a performance”.
is practice is not homogenous, and live coding realistically refers to a range of practices and approaches with differing
degrees of liveness, explored, for instance, by Church et al (Church, Nash, and Blackwell 2010). However, these practices
are united by principles found in the dra manifesto (hp://toplap.org/wiki/ManifestoDra) (if we are to take Toplap as
being representative of the movement, and for the sake of this paper, we will).

Live coders uses many of the same tools as Deadmau5 - that is, at the heart of the musical production set up there lies
a laptop - but these tools are used in quite different ways, even though we might draw connections between the sonic
outcomes. However, as we have seen, Deadmau5 does not believe that any of the “top djs in the world” use this tool
for “producing new original tracks on the fly”. Either Deadmau5 had not encountered live coding, or perhaps he was
not considering live coders amongst these world class DJs, for it is exactly the idea of “producing new original tracks on
the fly” that motivates much of if not all live coding. Peter Kirn, in one of the slew of aermath articles that followed
Deadmau5’s blog post, brings aention to themultiplicity of practices in creating live electronic music that are “more live”
than Deadmau5. (Kirn 2012) In this sense, live coding begins to have more in common with the liveness of composition
in Bailey than the liveness of execution in Deadmau5.

Live coding nearly always involves - andmore oen than not actively encourages - improvisation and unexpectedmusical
occurrences. Live coder or Magnusson declares, “Live coding emphasizes improvisation” and “[the] default mode of
live coding performance is improvisation.” (Magnusson 2014). ere are multiple ways in which live coding remains
an unpredictable musical environment to operate in. e frequent inclusion of randomness or algorithms with levels of
complexity to generate musical materials which prevent the coder from being able to fully anticipate the musical output
of their coding. Beyond the unpredictability of a program’s output, live coders oen execute their code in real-time in
response to the preceding stream of sound, the sound of other players, the response of an audience, and so on. At the
extreme end of the liveness in live coding is live coding “from scratch”, which could be seen as an impossible ideal due to
the underlying layers of abstraction on which a performance relies. e “from scratch” appellation signifies the coder’s
intention to perform in the moment or with their immediate presence, precisely the concept of “live” identified in Bown
et al. (Bown, Bell, and Parkinson 2014) and in many senses an epitome of non-idiomatic free improvisation.

However, live coding is, in other respects, not the “free” improvisation as described by Derek Bailey. It is oen working
decidedly within or at least in a conversation with idioms, and trying to obey musical rules - oen in situations where
obeying of musical rules, such as the rhythmic structures of house and techno, is frowned upon (for instance, at ICMC).



Early free improvisation groups, such as Bailey’s Joseph Holbrooke trio, were aempting to escape “the dogma of the
beat”, whereas live coding (for those generating dance music, at least) could be seen as trying to embrace the dogma
of the beat. Nonetheless, free improvisation serves as a crucial reference point because it encapsulates an approach
to instruments which explores their sonic affordances, such as we see in live coding. It also embodies the uncertainty
which live coders cultivate, the uncertainty that makes it ‘live’ coding, and the uncertainty which distances it from the
aspirations of total control that we find in Deadmau5. e approach to the laptop in live coding envisages it as a musical
instrument quite different to the studio tool of Deadmau5.

7. e Instrument and the Stage in Live Coding

e manifesto on Toplap declares, “Show us your screens.” rough projecting the performer’s screen during perfor-
mance, coding environments and the laptop itself are presented as an instrument, drawing on a traditional conception of
instruments that might be closer to thinking about a guitar or piano than the way in which Deadmau5 and his audience
imagine his laptop. Toplap notes that “[it] is not necessary for a lay audience to understand the code to appreciate it,
much as it is not necessary to know how to play guitar in order to appreciate watching a guitar performance”.

e showing of screens potentially allows for the demonstrations of instrumental virtuosity - what Deadmau5 mockingly
describes as the “lookit me im jimi hendrix check out this solo” elements of performance - that are precisely what is absent
in the performances of Deadmau5 and precisely what Deadmau5 is not interested in. is virtuosity might be perceived
differently to the virtuosity of a guitarist or other traditional instruments which might seemmore connected to the limits
of the performer’s body. Even to one unfamiliar with the playing of guitar, the sheer speed at which a performer can play
can be impressive and indicative of virtuosity. e shared experience of a human body between performer and listener
and an awareness of the physical limitations of that body can provide a common ground for understanding of virtuosity.
Similarly, a long sustained note on a woodwind or brass instrument, perhaps achieved through circular breathing, might
be perceived as virtuosic through its direct connection to the perceived or known limits of a body. e issues of speed
and physical limitations in live coding is discussed by Sorensen and Brown, referring to their duo aa-cell:

One problem that all live programmers must deal with is how to physically type the required code within
a reasonable period of time; reasonable for both the audience but, probably, more importantly, to assist the
performer to more rapidly realise ideas (Sorensen and Brown 2007)

It might be that the virtuosity in live coding is not anchored to the performing body in the same way that it might be for
a guitarist and that touch typing will never be as impressive as Van Halen. Virtuosity on the part of a live coder might
instead manifest itself through the use of difficult or less-common functions, complexity of code wrien live, or elegance
of expression in coding. Within live coding, this transparency of the projected activity is interrogated: Green writes
about the potential lack of transparency in code with low role-expressiveness (among other problems of notation), and
work is being done to explore legibility in programming languages (Green 1989; McLean et al. 2010).

In the framing of laptop as instrument, with a focus on the legibility of that instrument, live coding could be seen as
re-asserting elements of a concert hall tradition in electronic music. Describing the concert hall tradition of musicians
on stage, electronic musician Francisco Lopez notes:

From my perspective, electronic music doesn’t need this. Of course it can have it, it can develop its own
versions of it (as indeed it does). But it’s not inherent to it, it’s not a natural consequence of the practices and
essential manners of the operations of electronic music, but rather a symbolic acceptance of a tradition of a
very different nature (in this regard, probably an opposite nature). What is more important, I believe, is that
by blindly following this tradition it wastes the potential for strengthening a most important breakthrough
in music of perhaps historical proportions (López 2004).

Lopez discusses “the visible intricacy of instrument playing” that rock and classical traditions share, and that we might
see live coding beginning to share, too. He notes:

“While in the previous tradition of instrumental music each kind of sound corresponds to a certain ges-
ture and to a specific physical instrument, in electronic music every possible sound is produced with the
same click of a mouse, pushing of a buon or turning of a knob. I don’t find anything interesting in show-
ing/contemplating these actions (if they are visible at all).” (López 2004)



Live coding has found a way around this: the interesting interaction happens not in the clicking of a mouse, but in the
interactions on the screen and through code. “Showus your screens” becomes away of either re-asserting an instrumental
tradition in computer music or of increasing the transparency of the production. In the projection, electronic music
performance returns to the stage. Live coding contrasts with the view of Lopez in that it finds value in the means of
production, particularly its relation to the present.

It should be said that the highly visual nature of a Deadmau5 performance also differs from a Lopez performance which
takes place in a completely darkened room, and there is strong link to operatic and rock spectacles in Deadmau5’s
performances Still, in some senses Deadmau5 might be construed as being closer to the radical abandonment of the stage
that Lopez dreams of than the instrumentality of live coding in that a Deadmau5 performance, like a Lopez performance,
discards the presentation of instrumental activity.

However, live coding ultimately avoids “blindly following” the tradition that Lopez rejects: if we are suggesting that live
coding frames the laptop as an instrument in quite a traditional sense - more like the piano or the guitar than the studio
tool of Deadmau5 - it should be noted that this is done in quite a radical way. It is a vital experiment that draws on the
explorations of instruments in free improvisation, using the unique affordances of code and computer to create a live
instrument in which ideas of score and composition are blurred, a set of extended techniques for drawing unexpected
modes of expression out of a sophisticated adding machine. is serves to open up expressive possibilities in human-
machine interaction, rather than closing them down through smuggling outdated musical value systems in through
the back door. When the growing market for gestural controllers makes it all the more easy for a laptop performer to
express virtuosity through physical gestures, drumming on pads, and navigating arrays of blinking lights, live coding is
interrogating new languages of expression on stage whilst continually adapting its own instruments. Coding languages
are developed and extended through new libraries, for instance, and the laptop-as-instrument develops, becoming a
different machine in the hands of every programmer-performer.

7.1. Compositional and Instrumental Strategies in Live Coding

We have proposed that live coding quite explicitly treats the computer as an instrument, but it is a unique instrument
begot by the very specific affordances of laptops and coding environments. A live coding performance will combine
composition and improvisation, and the temporal nature of typing and evaluating code adds to the blurring between
improvisation and composition within a live coding.

Composition in live coding ranges from the direct authoring of lists of durations and notes to meta-composition in which
processes are defined which then determine the final sonic details. It blurs the distinction between instrument and score
(A. Blackwell and Collins 2005, 3). Its instrument contains the score, and the score is manipulated in a performance to
produce the media stream. e improvisational and compositional activity typically takes place in this range.

In the pre-performance activities of a live coder we see similarities to the studio composition of Deadmau5, and also the
practicing, exploring and honing of new techniques before a concert by an improviser such as Bailey. Like Deadmau5’s
studio work, the live coder might make libraries in advance of a performance that might not be altered during a perfor-
mance. On the other hand, like Bailey the live coder builds chops which are stored not in the muscle but in text files.
e typically modular nature of these code tools and their spontaneous usage in a performance allows them to be used
improvisationally rather than in inflexible arrangements like a pre-arranged Deadmau5 set. In other words, they are
used live for compositional purposes rather than perfunctory execution.

e laptop-as-instrument in live coding is a novel instrument that in many instances is being continually refined and
developed by practitioners in the field. Different musical challenges are met and, on occasion, tackled, a tactic we find
in free improvisation where “a large part of most improvising techniques is developed to meet particular situations
encountered in performance.” (Bailey 1993, 99)

For instance, there is oen a ‘conversational’ element of improvisation, as players will ‘exchange’ sounds, and to play
in this manner one must be able to quickly move between sounds. For a variety of reasons, moving quickly between
sounds is not always easy when performing with a computer. e difficulties of sudden changes in sound are discussed
in Sorenson and Brown; Hession and McLean (Hession and McLean 2014) discuss aempts on McLean’s part to develop
his coding language to go beyond fixed tempos and time signatures and explore changes in performance, enabling a more
‘conversational’ improvisation.

e musical exploration of laptop and code is similar to the unconventional interrogations of instruments through ‘ex-
tended technique’ and other strategies that are common in free improvisation. Keith Rowe started playing his guitar
flat on a table, Rhodri Davies plays his harp with a fan, and Sachiko M plays a sampler without loading sounds into its
memory. e hidden sonic affordances of an instrument are revealed through unconventional uses. A paper from the
early days of musical live coding describes a similar strategy at play:



“With commercial tools for laptop performance like Ableton Live and Radial now readily available, those
suspicious of the fixed interfaces and design decisions of such soware turn to the customisable computer
language. Why not explore the interfacing of the language itself as a novel performance tool, in stark
contrast to prey but conventional user interfaces?” (Collins et al. 2003)

Live coding frames the laptop as a real time musical instrument, different to the laptop as studio tool or composition
device, which draws on some of the more traditional ideas of instruments and in some senses places it closer to acoustic
instruments and traditions of stages and concert halls. However, this is a new instrument, a sonic exploration of a space
of possibilities created by laptops and coding environments, and it is in a state of flux and development.

8. Labour, Composition, and Live Coding

Rather than debate the value of the performance ethics of Deadmau5, Bailey or live coders, a caveat is mentioned in
order to show that given a continuum, it is possible to imagine performances which exist at different points along that
continuum. Having argued this far, it now remains for a live coder to make a spectacle from some kind of perfect
reproduction of programming. is could be a real-time presentation of the symbols of code without any compositional
activity actually taking place, like executing pre-wrien code according to a script. It could be said that recent live
performances of Ryoji Ikeda and Robert Henke performing as Monolake do something in this direction. Ikeda could
be said to fetishise data or revel in its code-like appearance. e recent Monolake spectacle “Lumière” features the text
“love” and “code” in a tightly synced live AV show (author 2014).

A live coder executing pre-wrien blocks of code without editing them in a pre-sequenced order could also be said to
bear significant similarity to Deadmau5. It might also be argued that writing a “for” loop or even re-implementing a
well-known algorithm in a performance puts the performer closer to the Deadmau5 pole if it can be said that there is
lile that is compositional in those two activities.

is brings into focus the issue of liveness and “labour”. It seems some may want to see a performer working or engaging
in physical activity, precisely the definition of “liveness” argued for here. is may stem from pressure of ‘concert hall’
and other older performance practices as mentioned in the discussion of Lopez above. Whether there is value in the
non-compositional labour involved in writing out for loops or dealing with the requirements of the syntax of a language
remains to be argued in a future paper. e visible screen of the live coder at least assures the audience that the labour
being undertaken is appropriate to the task in hand and the performers fee (if they were lucky enough to get one), and
they are less likely to be checking their Facebook, filing their tax return, replying to emails or submiing conference
papers.

In a sense, Deadmau5 epitomises a newmodel for labour-free “live” computermusic that earlier theorists have anticipated,
one that embraces the very unique affordances of the computer as a servile musical tool. On the other hand, the physical
spectacle of Deadmau5 simultaneously places him quite firmly in rock or operatic traditions. In contrast, live coding
reveals the compositional labour to the audience.

9. Conclusion

rough looking at the very different practices of Derek Bailey and Deadmau5, we have described a continuum. ey
provide opposing poles on this continuum of liveness with regards to composition and thinking about instruments.

e aspirations towards transparency of activity in live coding contrast with the opaqueness of Deadmau5’s activity in
terms of its effect on the sound. Live coding values the performer’s compositional activity in the performance whereas
Deadmau5 does not, placing the emphasis on the live activity of the lights and the audience as co-performers and in the
non-live compositional activity in the studio prior to the concert.

Live coding uses the laptop and soware as a musical instrument. In some ways, this is quite traditional compared to
Deadmau5, but perhaps more importantly we find an instrumental practice that relates to free improvisation, especially
through the unbounded exploration of the musical potential of materials.
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ABSTRACT

We describe research extending the live coding environment Gibber with affordances for ensemble, networked, live
coding performances. ese include shared editing of code documents, remote code execution, an extensible chat system,
shared state, and clock synchronization via proportional-integral control. We discuss these features using the framework
provided by Lee and Essl in their 2014 paper Models and Opportunities for Networked Live Coding.

1. Introduction

Collaborative editing of documents has been a staple of browser-based authoring tools for many years, with operational
transforms (Ellis and Gibbs 1989) enabling writers to freely edit documents with other authors concurrently. Concur-
rent editing of shared documents is especially promising for ensemble live-coding performance, as it offers performers
the ability to view and edit the work of their fellow performers, but it also creates a variety of challenges. Having
implemented concurrent editing of code in two different environments for live coding performance, we share lessons
learned and outline feedback mechanisms to help inform ensemble members when code is executed during performance
and who executed it. In addition, we describe research that automatically synchronizes Gibber instances to a master
rhythmic clock via PI control structures, even with the inherent jier imposed on communications by the TCP-based
WebSocket protocol.

Our research enables a group of performers to sit in a room with their laptops, join a network, execute a single line of
code, and immediately enter an ensemble performance where each performer’s code is freely available for editing by
every member and all clocks are synchronized. We call this system Gabber ; it works inside of the browser-based live
coding environment Gibber (Roberts and Kuchera-Morin 2012).

2. Strategies for Networked Ensemble Performance

Lee and Essl survey strategies enabling networked live coding performances in (Lee and Essl 2014a). Gibber incorporates
many of these strategies; this section builds off their work by describing Gibber’s networked ensemble affordances using
their terminology.

2.1. Time Sharing

efirst strategy discussed by Lee and Essl is time sharing, which concerns synchronizing events between performers. Al-
though Gibber initially had nomethods for sharing time, we have addressed this problem by phase-syncing all schedulers
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in ensemble performances as described in Section 3. Despite the research outlined here on temporal synchronization, we
note that there is a rich terrain of performance possibilities that can be explored without synchronization; three authors
on this paper have successfully given a number of such performances (Roberts et al. 2014).

2.2. Code Sharing

Gibber implements code sharing at a number of different levels. For asynchronous collaboration, Gibber provides a
centralized database enabling users to save and retrieve the programs (aka giblets) they create. is database is searchable,
and users can provide a variety of metadata about giblets to aid in the search process. Giblets can be easily iterated and a
versioning system enables users to examine changes throughout a giblet’s development. Most importantly, every giblet
can be accessed via a unique dedicated link, providing an easy mechanism for users to distribute their work to others.

Gibber’s initial synchronous affordances enable any registered Gibber user to start collaboratively editing a code docu-
ment with a remote user (who can be located anywhere with internet access) by simply clicking their name in one of
Gibber’s chatrooms; this feature also enables users to remotely execute code across the network if permission is granted.
In this instance, users can either find each other through happenstance by joining the same chat room, or users who know
each other can agree to meet in a particular chat room to participate in a shared editing session together. We envision
the second instance being particularly useful for classes taught in computer labs or via distance learning; a teacher can
have all students meet her/him in a particular chat room and then assist students as needed via the collaborative editing
features.

Although performances consisting of a single, shared code editor initially seemed promising, in practice they proved
problematic (Wakefield et al. 2014), as program fragments frequently shied in screen location during performances
and disturbed the coding of performers. A beer strategy is to provide a dedicated shared editor for every member of
the performance; this strategy was adopted in the Lich.js live coding environment (McKinney 2014) with read-only code
editors. In other words, with N players there are N collaboratively editable documents, along with a social convention
that each document uniquely “belongs to” or is somehow primarily associated with a single person. Our implementation
of Gabber provides this capability, enabling everyone to code in their own personal editor and also read and edit the code
of other users as necessary.

Although Gibber’s original code-sharing model allowed this, quadratic growth of managing code sharing permissions
made it too cumbersome for N > 2. We subsequently implemented a much simpler method for beginning networked
ensemble performances in Gibber. Aer performers agree upon a unique name for a Gabber session, they begin the
session with a single line of code:

Gabber.init( 'uniqueSessionName’ )

Executing this either creates (if necessary) or joins (if already existing) a named networked live coding session on the
worldwide Gibber server, and triggers the local browser to:

1. Open a Gibber chatroom named identically to the Gabber session that contains all the session participants.

2. Create a new user interface column containing everybody else’s shared code editors (and updating dynamically
as people join or leave).

3. Share the code editor where the call to Gabber.init was executed with all members of the session.

Aer these actions are carried out, the user interface of the Gibber environment will resemble Figure 1. Clicking on a
tab in the shared editing column reveals the associated user’s code editor.

2.3. State Sharing

ere are two modes of state sharing in a Gabber session. e default local mode is designed for physically co-located
performances: each user explicitly selects code (from anybody, as described in Section 2, although performers will com-
monly execute code they authored) and triggers execution on their own computer to generate a unique audio stream
which renders only their personal actions. Users can also explicitly execute code on the machines of other ensemble
members using specific keystroke macros. If the executed code is contained in personal editor of the executing per-
former then it is broadcast and run on all machines on the network. If instead the code is contained in the shared editor



Figure 1: A screenshot of the Gabber interface in a networked performance with three performers: Peter, Paul and Mary. e
screenshot shows what Paul is seeing. Note the two highlighted code fragments; the blue highlight indicates code that the
performer (Peter) has sent over the network to be executed. e red highlight indicates code that another member (Paul) of
the ensemble has remotely executed on Peter’s machine.

of another performer it is only executed on the associated performer’s computer, enabling, for example, a user to lower
the amplitude of a particular ugen they find to be too loud.

In contrast, remotemode assumes performers are in physically disparate locations; this in turn means that each computer
must locally render the entire performance. Executing any code in remote mode automatically also sends it across the
network for execution by all ensemble members. Although prior research has streamed audio between ensemble mem-
bers (Wang et al. 2005), remotely executing code offers a much lower bandwidth footprint, but comes with potentially
higher CPU usage for each computer and the inability to share stochastic or interactive components of a performance.

In order to mitigate this, Gabber provides an easy mechanism for sharing arbitrary JavaScript data, drawing inspiration
from the tuple approach adopted by Impromptu (Sorensen 2010) and the shared namespace used in urMus (Lee and Essl
2014b). e main Gabber object contains a shared data object which is distributed among all members of a Gabber
performance. Defining a shared variable consists of a single method call; aer executing this method any changes to
the variable are distributed to all ensemble members. An example of defining a shared variable and changing it is given
below:

Gabber.shared.add( ‘pattern’, [ ‘c4’,’d4’,’g4’ ] ) // define & distribute the initial ‘pattern’ variable

Gabber.shared.pattern = [ ‘d4’,’d#4’,’g#4’ ] // change the pattern and distribute changes

Importantly, properties of the PI controller used to synchronize the clocks of Gibber instances (discussed in Section 4)
are all properties of this shared object, enabling users to easily tune the controller and automatically propagate changes
to all participants.

2.4. Access Control and Cating em Red Handed

Although various strategies for limiting code execution on the machines of other ensemble members have been explored
(Lee and Essl 2014b), Gibber uses a simpler, fully permissive scheme similar to the Republic quark for SuperCollider
(Rohrhuber et al. 2007). Remote code execution, while presenting powerful opportunities for spatialized code execution,
also has great potential for misuse and mischief. In performances by the CREATE Ensemble at UC Santa Barbara, one
notorious user named killbot would routinely start algorithms running on remote machines that would gradually kill
off running unit generators. As a result, designing killbot-proof algorithms became a game for the ensemble. A call
to Gabber.block( 'userNameToBlock' ) blocks remote execution by a particular performer, removing the challenge of
blocking killbot but perhaps making for less stressful ensemble dynamics.

Even assuming that ensemble members have each others’ best interests at heart, there is a need for performers to under-
stand when (and by whom) code is remotely executed on their computers, e.g., so performers understand sudden changes
in the sounds they are generating. For this reason we have added a number of simple visual annotations to Gibber to



indicate remote code execution in local mode, as shown in Figure 2. When code is executed and sent to all members
of a performance, it is highlighted in red in all editors. When code is remotely executed on the computer of a single
performer it is highlighted in blue.

2.5. Communication Facilitation

Each Gabber session has an associated chatroom for coordinating performance structure, discussing code, and banter.
ere are also programmatic hooks enabling users to detect when chat messages arrive and take action based on their
content and/or author. ese hooks have been used in summer camps for high school students to explore generative
music-making in a program run by the Experimental Music and Digital Media program at Louisiana State University,
and in classes at UC Santa Barbara.

3. Centralized and Decentralized Network Structures

Lee and Essl define a centralized performance network as onewhere clients submit code to a server for rendering. e first
ensemble Gibber performance, performed in April of 2012, adopted this model (Roberts and Kuchera-Morin 2012; Roberts
et al. 2014): a single server computer drove both the audio and visual projection systems, with scrolling displays of all
code sent from clients and of the performers’ chatroom. As Lee and Essl describe, this model automatically synchronizes
time and state according to when the server executes each received code block. One additional benefit is the potential
to preview code changes before submiing them to the server. Gibber’s different keystroke macros to execute code
locally vs. remotely enable performers to audition code for execution on headphones before sending it to the server
for projection through the house speakers. is style of previewing only works in performances where each ensemble
member is submiing code that does not rely on the state of the master computer; accordingly, in our first Gibber
performance each member had particular ugens that they were responsible for creating and manipulating. Gabber can
easily mimic these early performances. Ensemble members can use headphones on their personal laptops while a single,
central, computer is connected to the audiovisual projection systems. Users target their personal computer (to audition)
or the central computer (to present to the audience) for code execution as described in Section 2.3

Research presented in this paper extends Gibber to support the other two network models discussed by Lee and Essl. e
remotemode of performance, described in Section 2.3, supports the decentralized model, where everymachine runs all ele-
ments of the performance concurrently. e local mode of performance supports decentralized programming with central
timing, enabling users to have personal control over state on their computers while providing temporal synchronization.

4. Network time synronization

Many network time synchronization solutions exist (e.g., GPS, NTP, PTP), but most are implemented at the system level,
requiring soware installation and careful configuration of each machine in the network. Furthermore, these common
solutions only maintain synchronization of system clocks (which Gibber does not use), not audio clocks (which Gibber
does use). By implementing network time synchronization entirely within Gibber, we free users from the need to run
external soware to achieve synchronization. In effect, seing up a shared performance requires nothing more than an
internet connection enabling users to connect to the worldwide Gibber server. e Gibber server is freely available on
GitHub if users need to run their own local instance; this could be useful in a performance where an internet connection
is unavailable or unreliable.

4.1. Synronization with a Hybrid Proportional Controller

e Gabber server broadcasts its time (in samples) to all Gibber instances (clients) on the network via TCP/WebSockets
once per audio buffer (typically 1024 samples). Upon receiving the server’s time (now out-of-date because of network
latency), each client subtracts its local time. Controller code within each client uses this difference (aka error) to decide
how to correct the client’s local time such that the client’s timer converges to synchronize with that of the master.

We use a hybrid controller (Lygeros and Sastry 1999)with twomodes: coarse and fine. e coarsemode operateswhen the
client is out of sync beyond a particular threshold, and immediately sets the client’s time to the most recently received
master’s time, disregarding any discontinuities this causes. For example, the first time a Gibber instance receives the
server’s time (when someone joins a performance already in progress), the coarse mode takes effect immediately, geing



the new performer roughly in sync with the rest of the group. Audio dropouts caused by spikes in CPU usage in the
client can also cause this type of correction.

efinemode, which operateswhen the error is below the threshold, uses a proportional controller tomake small, smooth
adjustments to the client’s time. e default proportional constantwas chosen empirically following experimentation and
observation but can be freely edited by users; as described in Section 2.3 such changes to the controller are immediately
propagated to all members of a performance. e controller acts on a low-passed version of the error signal due to the
relatively low rate at which the error calculation and control is performed (typically 44100/1024 Hz, once per audio block
callback). Changing the length of the running mean involves a tradeoff between fast response (short mean length) and
smooth operation but long convergence time (long mean length).

Our nominal value of the threshold for switching control modes was also determined empirically through consideration
of the minimum amount of time that a client would have to be out of sync for the coarse correction to be more aestheti-
cally pleasing (approximately 100 ms for 120bpm 44100Hz sample rate group performance, varying according to musical
features such as tempo). e threshold used for coarse correction is exposed to the user via Gabber’s shared data object.

e code below is our controller implementation in JavaScript pseudocode:

K_p = .05

coarseThreshold = .1 * sampleRate

runningMean = RunningMean( 50 )

localPhase = 0

function onMessageFromServer( masterPhase ) {

error = masterPhase - localPhase

if( abs( error ) > coarseThreshold ) {

// coarse controller

localPhase = masterPhase

Gibber.setPhase( localPhase )

runningMean.reset()

}else{

// fine controller

var phaseCorrection = K_p * runningMean( error )

localPhase += phaseCorrection

Gibber.adjustPhaseBy( phaseCorrection )

}

}

(Brandt and Dannenberg 1999) presents a method of “Forward-synchronous” audio clock synchronization using PI-
control. eir implementation accounts for noisy error measurement using a second PI controller that takes advantage
of local, low-jier system clocks on clients. We use signal conditioning (moving average) instead. eir system makes
control adjustments much less oen than ours.

(Ogborn 2012) describes EspGrid, a protocol/system for sharing time and code, as well as audio and video among players
in networked laptop orchestras. EspGrid uses Cristian’s algorithm (Cristian 1989) to present a synchronized system clock
to each user so that s/he might schedule the playing of shared beat structures. We implemented Cristian’s algorithm in
Gibber, but found the results unsatisfying compared to our current solution. EspGrid has the benefit of using UDP while
Gibber is limited to TCP/WebSockets (and the jier associated with its error correction) for network messages. is
could be one reason for our comparatively subpar results with Cristian’s algorithm.

4.2. Results

In tests, clock synchronization in Gibber has produced aesthetically satisfying results. Sound events feel like they happen
“in beat” even on a WiFi network, with users experiencing quickly fixed audio glitches. However in unfavorable WiFi
conditions (i.e., heavy traffic, many overlapping networks, interference) the controllers in Gibber instances may exhibit
thrashing and/or non-convergent correction. By adjusting the proportional control constant, coarse mode threshold time,
and error signal low-pass length, the system can be made more tolerant of various differing conditions, but as a general
rule it is best to use a wired LAN in performances where wireless conditions are less than ideal.

When a Gibber instance becomes “out of beat” for whatever reason (i.e. network problems, jier, high CPU load, etc), it
typically heals within the coarse mode threshold time. In our tests, measurements of the steady-state error for clients



on a WiFi network had a mean of 13.5 samples with a standard deviation of 39.2 samples. For comparison, the measured
network jier was approximately 2ms (~88 samples).

5. Conclusions and Future Work

We have described an extension to Gibber, named Gabber, that significantly eases setup of networked live coding per-
formances. Joining a Gabber performance requires only a single line of code to be executed, and provides clock synchro-
nization, code and state sharing, remote execution of code, and an extensible chat system for networked performances.

In the future, we are particularly interested in additional visual indicators documenting the actions of individual perform-
ers to their fellow ensemble members. For example, given that a performer is responsible for creating and manipulating
a particular set of ugens, a waveform and/or spectral visualization of their summed output could be displayed in the as-
sociated tab of their shared editor on remote machines. is would enable users to, at a glance, see the overall spectrum
and amplitude contributions of each member, potentially giving them an idea of who is responsible for each instrument.

Further future work will be informed by performances given using Gabber. Although the CREATE Ensemble has suc-
cessfully performed a number of networked pieces using Gibber (as has the Laptop Orchestra of Louisiana) we have yet
to perform with Gabber in its current incarnation. We are excited about the introduction of a shared clock for ensemble
performances, and the resulting possibilities for networked algorave participation.
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ABSTRACT

Grace is a new object-oriented education programming language that we are designing. One of the Grace implementa-
tions, Hopper, is an interpreter that runs on top of JavaScript. Gibber is series of libraries that support real-time audio
processing, and also a simple livecoding interactive development environment, also on top of JavaScript. In this demon-
stration, we will present Gribber, a web-based IDE that incorporates the Hopper interpreter into the Gibber IDE, and so
gives Grace live access to the Gibber audio libraries. Because of Hopper’s continuation-passing design, Gribber programs
can appear multi-threaded, apparently running one or more loops in parallel, each pseudo-thread generating sound and
graphics in simultaneously. We will demonstrate how Gribber can be used for BALSA-style algorithm animation, and
Sorting Out Sorting style algorithm races.

1. Introduction to Grace

We are engaged in the design of Grace, a new object-oriented open source programming language aimed at instructors
and students in introductory programming courses (Black et al. 2012; Black et al. 2013; Homer et al. 2014). Grace aims to
include features that have been found useful in soware practice, while allowing multiple different teaching approaches
without requiring that concepts be introduced to students before they are ready.

While many aspects of Grace’s design will be familiar to most object-oriented programmers — we hope Grace’s syntax,
declarations, control structures, andmethod semantics appear relatively conventional — there are some aspects of Grace’s
design that are unique. In particular, Grace tries to separate the concepts of object, class, and type. In Grace, objects can
be created without classes (like JavaScript or Sel), or with classes (like most other object-oriented languages). Classes
in turn can be built by hand out of objects (like Emerald, if anyone’s counting). Grace types are optional (gradual): types
in Grace programs may be le out all together (like Python or JavaScript), always included (like Java or C♯), or used in
some mixture (like Dart or Dylan).

To give the flavour of the language, we show the Grace code for an imperative Insertion Sort, as may be found in many
introductory programming course sequences. Hopefully this example is comprehensible to readers from a wide range of
programming backgrounds:

method insertionSort(array) {

var i := 2

while {i <= array.size} do {

var j := i

while {(j > 2) && (array.at(j-1) > array.at(j))} do {

array.swap(j) and(j-1)

j := j - 1

}

i := i + 1

}

print "done insertion"

}

e first Grace implementation, Minigrace (Homer 2014) was a self-hosted prototype compiler to C and JavaScript. More
recently, Jones has built Hopper (Jones 2015), a continuation-passing style interpreter wrien in JavaScript.
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2. Livecoding in Grace

As well as being artistically and philosophically interesting in its own right (Blackwell et al. 2014), livecoding promises
to increase engagement and learning in Computer Science pedagogy — indeed pedagogy has motivated much of the
early work in live programming of many kinds (Papert 1980; Goldberg and Robson 1983). More recently, projects such
as SonicPi (Aaron 2015), for example, use livecoding both to increase student engagement in programming, and also to
support learning; indeed there is some evidence that livecoding can increase both engagement and learning even when
it replaces static slide shows of the same content (Rubin 2013).

Unfortunately, our existing first Grace programming environment prototypes did not support livecoding. While Mini-
grace could self-host in JavaScript in a browser, it ran only in batchmode: code could not be modified on the fly, and loops
(e.g. sort methods) would lock up the browser until they completed (Homer 2014). is is a problem for introductory
programming courses where sorting is a common topic.

3. Grace in Gibber

We were able to solve these problems by combining our second-generation Hopper interpreter (Jones 2015) with the
Gibber livecoding environment (Roberts and Kuchera-Morin 2012; Roberts et al. 2014). Gibber provides powerful audio
and video libraries, and an IDE particularly suited to livecoding that can be easily extended to support different languages.
JavaScript livecoding in Gibber unfortunately suffers from the problem that loops in programs will effectively delay the
browser until they complete — this is a problem of JavaScript’s single-threaded event-based programming model: each
event must run to completion before the next event can begin execution. For e.g. livecoding and visualising a sorting
algorithm, we need to visualise each interesting event in the algorithm as it happens, rather that just flick from an
unsorted to a sorted array in a single time step.

e Hopper interpreter solves this problem by running Grace programs in a continuation-passing style. Each Grace
subexpression (method request in Grace terminology) is executed one step, and then control is returned to the main
loop, with the next step reified as a continuation (Abelson and Sussman 1985). Aer a timeout to allow other events,
browser (or Gibber tasks), or indeed other Grace expressions to run, the delayed continuation will be picked up, again
executed one step, again reified as a continuation and control yielded again. e effect is quite similar to SonicPi’s use
of Ruby’s threading (Aaron and Blackwell 2014) except implemented solely in an interpreter wrien in JavaScript: the
continuation passing and time slicing is not visible to the Grace programs. is allows Gribber to support BALSA-style
algorithm animation (Brown 1988; Brown and Hershberger 1991), and Sorting Out Sorting style algorithm races (Baecker
and Sherman 1981), which cannot be supported in Gibber in naked JavaScript. Figure 1 shows a Grace insertion sort
running under Gribber in the Gibber IDE.

4. Conclusion

We have combined the Grace Hopper interpreter with the Gibber livecoding environment to produce Gribber — a live-
coding environment for the Grace educational programming language. We hope Gribber will help communicate the
advantages of livecoding to the educational programming languages community, and the advantages of a clean educa-
tional programming language design to the livecoding community.
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Figure 1: A Grace insertion sort running under Gribber in the Gibber IDE. Note the translucent squares visualising element
values: these are updated as the algorithm runs.
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ABSTRACT
The self-explorative,  collaborative environments and virtual worlds are setting up the new standards in
software engineering for today. In this, live coding is also required in reviewing as for programmers and as
for  artists  too.  The  most  popular  live  coding  frameworks,  even  being  built  by  using  highly  dynamic,
reflective languages, still suffer on tight bindings to single-node or client-server architecture, language or
platform dependence and third-party tools. That leads to inability nor to develop nor scale to the Internet of
things the new created works using live coding. In the paper we introduce the prototype of integration of
object-oriented language for pattern matching OMeta onto Virtual World Framework on JavaScript. That
integration will allow using the live coding in virtual worlds with user-defined languages.  Also we explore
the possibilities of a conformal scaling of live coding in the case of augmented reality systems and Internet
of things. In summary, the paper describes the efforts being done for involving virtual worlds architecture in
live coding process. All prototypes that are described in the paper are available for experimenting with on
Krestianstvo SDK open source project: http://www.krestianstvo.org

1. FROM CODER TOOLS TO SELF EXPLORATIVE, COLLABORATIVE ENVIRONMENTS
Fundamentally, live coding is about highly dynamic programming languages, reflectivity, homoiconicity and
Meta properties. For example, families of functional languages like Lisp, Scheme, Clojure or pure object-
oriented Smalltalk, etc. could be considered as "ready” for live coding. And adding to that languages some
rich library  of  functions  for  working with  network,  multimedia  (audio,  video)  and integrated  program
development  environment  (IDE)  based  on  the  debugger,  makes  them a  complete  environment  for  live
coding. The most popular live coding frameworks still share this tools-centric approach, but the current
developments in virtual & augmented reality, Internet of Things, robotics etc. shows, that this approach
requires some review. The revival and emergence of the self explorative environments and virtual worlds,
like Self language environment, Etoys, Scratch, OpenCroquet,  LivelyKernel, Virtual World Framework is
observed now. This will change the role of the programmer and artist in the process of live coding and also
will change the process of live coding itself. See Figure 1 for the prototype of controlling several instances of
SuperCollider using self explorative, collaborative Open Croquet based virtual world: Krestianstvo SDK. 

Figure 1. Installation Man’J (Soshenina 2010)



2. LIVE CODING IN VIRTUAL WORLDS WITH USER DEFINED LANGUAGES 
We want to introduce the prototype of integration of object-oriented language for pattern matching OMeta
on to Virtual World Framework.  The integration will allow to define on any VWF component it's  own
language grammar and replicate it through the application instances, then have a running scripts based on
that shared grammar for that component. For example, one could have all the languages down from Logo
(Turtle graphics) to Lisp, Smalltalk, even SuperCollider, available for scripting the virtual world just in the
Web browser in real-time, see Figure 2.
The Virtual World Framework (VWF) provides a synchronized collaborative 3D environment for the web
browser. Continuing the Open Croquet research effort, VWF allows easy application creation, and provides
a simple interface to allow multiple users to interact with the state of the application that is synchronized
across clients, using the notion of virtual time. A VWF application is made up of prototype components,
which  are  programmed  in  JavaScript,  which  allows  a  shared  code  and  behaviors  used  in  distributed
computation, to be modified at runtime (Virtual World Framework 2015). OMeta is a new object-oriented
language for pattern matching. It is based on a variant of Parsing Expression Grammars (PEGs), which have
been extended to handle arbitrary data types. OMeta's general-purpose pattern matching facilities provide a
natural  and  convenient  way  for  programmers  to  implement  tokenizers,  parsers,  visitors,  and  tree
transformers (Warth 2007). We use ADL Sandbox project as a real-world application, which is built on top of
VWF.

Figure 2. Integration of OMeta onto Virtual World Framework 

To realize that integration we implemented the OMeta driver for VWF. The drivers in VWF define the
autonomic actions that happen within a system, dividing responsibility and delegating work for each action
of the system. These actions include things such as creating or deleting a node, getting or setting a property,
calling methods, and firing events. To load the driver we were needed to include it in the files, that respond
for VWF booting process.
As an example, see Figure 3 for a simple L-system parser-generator and Turtle-Sphere for drawing it (Suslov
2014).  The virtual world holds two objects,  one for drawing and another for parsing and generating L-
system strings. For that purposes, the last one has two grammars, one for parsing user-defined input string



and another for parsing the generated structure. The rule of the generator is defined recursively in OMeta
(Warth 2009). We used an enhanced Script editor inside the virtual world framework for editing the source
of the grammar.

Figure 3. Editing L-system grammar in virtual world

That Script editor is working as Smalltalk browser in self-exploratory environment Squeak (Ingalls 1997). It
allows to inspect  the properties,  methods,  and events  of  the  selected  VWF component  visually  and to
modify it. 
Here is the source code of OMeta parsers of L-System in VWF and sample expression, which is defined by
one of the live coding session participant in real time:
ometa ParseString {

  digit    = ^digit:d  -> d.digitValue(),

  symbols = ("-" | "+"):n -> n,

  readRule = letter:n -> n

      | symbols,

 expr = <digit*>:d ";" spaces letter:f "=" spaces readRule*:a ";" spaces letter:g "=" spaces
readRule*:b ";" 

spaces readRule*:n spaces -> [d, [[f, a], [g, b]], n]

}

ometa ParseStructure {

  symbols = ("-" | "+"):n -> n,

  line = (letter | symbols)*,

  rules = [letter [line]]*,

  takeRule:g = [takeRuleFor(g)*:m] -> (vwf.callMethod(nodeID,"flatCollection",[m])),

  takeRuleFor:g = letter:k -> (vwf.callMethod(nodeID,"selectRule",[g, k])) | symbols:n -> [[n]],

  gen 0 [rules] [line]:t -> t,

  gen :n :g takeRule(g):k = gen(n-1, g, k):m -> m

}

tree = LSystem.matchAll('5; F=F-F++F-F; G=; F++F++F', 'expr')

LSystemGen.matchAll(tree,'gen')



VWF could contain a lot of simulations running in it. These simulations could be based on data, generated
by software, but also the data, that is gotten from any external hardware, like sensors. OMeta language will
be a natural solution for parsing that incoming data in user-defined way.

3. CONFORMAL SCALING OF LIVE CODING IN THE CASE OF INTERNET OF THINGS 
AND AUGMENTED REALITY SYSTEMS

In general, a lot of existed live coding programming languages and their tools are based on single-node or
client-server architectures. And these nodes are extended with a huge amount of communication protocol
libraries, like Open Sound Control, MIDI, raw packets, user-defined API etc. for working with controllers
and  external  nodes.  So,  the  artist  works  in  form of  a  “puppeteer”,  who actually  has  a  quite  different
approaches in live coding of itself and connected to him nodes.  In other words,  very often the scaling
mechanism from one to many nodes lies at the API and libraries level, instead of the programming language
itself.  The virtual worlds, which are based on the model of distributed computation, like Open Croquet and
Virtual World Framework, solve that problem by generalizing the model of communication, omitting it up
to the virtual machine level of the programming language. So, that we could observe a conformal scaling
from one node to many, while never using live coding techniques in terms of communication protocols. 

Figure 4. Photo of CAVE environment, running by OpenQwaq/Krestianstvo virtual world

We built the prototype of CAVE (cave automatic virtual environment), which is made of six nodes (personal
computers),  see  Figure  4.  CAVE application  is  based  on  our  modified  version  of  the  OpenQwaq/Open
Croquet virtual world development kit: Krestianstvo SDK. Four nodes are used for projecting virtual world
onto the cube walls, one node is used for controlling movements in virtual world and the last one is used for
setting the parameters of the CAVE.  Open Croquet architecture was built for creating replicated virtual
worlds, which are distributed over the network. Several running virtual machines and their corresponded
images with source code, define the replicated state of the whole computation – Island (Smith 2003). Live
coding could be done from any node,  as all nodes are equal to each other.  So,  the coder is working in
Smalltalk  browser,  which  could  be  opened  in  virtual  world  also.  Any  modification  in  source  code  is
replicated  immediately  to  all  instances  of  one  shared  Island.  While  coding,  an  artist  uses  well-known



Smalltalk language constructions. Scaling the CAVE with the new nodes is done just by starting the new
ones and connecting them to the running virtual world. Using an avatar an artist adjusts the properties of
the CAVE system, see Figure 5. The early prototype was used for installation in The State Tretyakov Gallery
in Moscow and The National Pushkin Museum in Saint Petersburg for turning one of the exhibition halls
into CAVE: "A. Ivanov Biblical sketches" installation. 
So the artist gets the full featured connected virtual/real space to manipulate with. For example: it is easy to
model augmented lightning for the physical room. The artist could freely experiment with the transitions
and effects of a light’s source, move it in the virtual space, while observing the visual effect on the real
room’s walls. More over, one could experiment with geometry transformations, like dividing, adding new
virtual content, while projecting his distributed virtual model just onto physical space in real-time (Suslov
2012). One could use Microsoft Kinect, DMX controllers, TUIO markers, etc. connected right into virtual
world.

Figure 5. CAVE control virtual world based GUI

4. CONCLUSIONS
The novel VR, gesture, motion detection interfaces and robotics stuff allow the artists to build/run real-time
performances/VJ  sessions  in  Theatre,  Art  gallery  and  Learning  labs,  where  they  get  the  full  featured
connected virtual/real space to manipulate with (augmented reality).  But, live coding in such cases become
more  and more  complex  task,  due  to  heterogeneous  nature  of  Internet  of  things.  Existing  live  coding
environments are continuing building up to the set of extensions and tools for artists-programmers. On the
contrary,  the  virtual  worlds  have  already  started  to  provide  the  ability  for  code  to  be  delivered  in  a
lightweight manner and provide easy synchronization for multiple users to interact with common objects
and environments.  The Virtual  World Framework  is  an example,  which will  help  to interface  different
multimedia content, simulations, objects, users and locations; which will extend and expand the scope of
live coding process and move it towards Virtual Being. 
The integration of  Virtual  World Framework and OMeta makes possible  a  collaborative live coding on
distributed objects with user-defined grammars. These objects could exist alongside each other in the same
replicated virtual world, being programmed on quite different languages, but holding the same simulation.
Also the integration allows researchers and programmers to experiment with language design ideas for



distributed objects in collaborative way. Due to Internet nature of VWF, OMeta being in it is extremely
suitable for parsing an online content from hypertext to rest services and open data.
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ABSTRACT

lileBits (lileBits.cc) is an open-source hardware library of pre-assembled analogue components that can be easily
assembled into circuits, disassembled, reassembled, and re-used. In this demonstration, we will show how lileBits —
and the KORG lileBits SynthKit in particular — can be considered a physically-embodied domain specific programming
language, and thus how assembling or improvising music with lileBits circuits is a tangible form of livecoding.

1. Introduction

lileBits (lileBits.cc) is an open-source hardware library of pre-assembled analogue components that can be easily
assembled into circuits, disassembled, reassembled, and re-used (Bdeir 2009). Designed to inspire and teach basic electrics
and electronics to school-aged children (and adults without a technical background) lileBits modules clip directly onto
each other. lileBits users can build a wide range circuits and devices with “no programming, no wiring, no soldering”
(Bdeir 2013) — even extending to a “Cloud Module” offering a connection to the internet, under the slogan “yup. no
programming here either [sic]” (lileBits 2014).

e lileBits system comes packaged as a number of kits: “Base”, “Premium”, and “Deluxe” kits with 10, 14, and 18
modules respectively; and a series of booster kits containing lights, triggers, touch sensors, and wireless transceivers.
lileBits have recently introduced special purpose kits in conjunction with third party organisations, notably a “Space
Kit” designed in conjunction with NASA, and a “Synth Kit” designed in conjunction with KORG that contains the key
components of an analogue modular music synthesizer.

In spite of lileBits’ marketing slogans, we have argued that lileBits —- and the lileBits Synth Kit in particular (Noble
and Jones 2014a; Noble and Jones 2014b) — as a live physically-embodied domain specific programming language. If
building lileBits circuits is programming, then performing music with the lileBits Synth Kit (configuring modules to
construct an analogue music synthesizer, and then producing sounds with that synthesizer) can be considered as a music
performance by live coding (McLean, Rohrhuber, and Collins 2014) — especially as the circuit construction typically
occurs simultaneously with sound production.

e demonstration draws directly on previous demonstrations given at the FARMworkshop in Uppsala (Noble and Jones
2014a) and the VISSOFT conference in Victoria (Noble and Jones 2014b).

Figure 1: A simple lileBits Synth Kit circuit. From le to right, the three modules are a power source, an oscillator, and a
speaker.
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2. e littleBits SynthKit

Figure 1 shows the one of the simplest circuits in the lileBits synth kit — indeed, the simplest lileBits circuit that can
actually make any sound. is circuit is composed of three simple modules — a power module on the le, an oscillator
module in the centre, and a speaker module on the right. e power module accepts power from a nine volt baery (or
a 9V guitar pedal mains adapter) and provides that power to “downstream” modules — as seen in the figure, lileBits
circuits flow in a particular direction, and all modules are oriented so that this flow is le to right.

3. Livecoding with littleBits

If building and configuring circuits with lileBits can be considered as a form of embodied, tangible, programming, then
performing music “live” with lileBits can be considered as a form of livecoding — performance programming to produce
music (McLean, Rohrhuber, and Collins 2014; Blackwell et al. 2014; Magnusson 2014) — or in this case both building and
playing synthesizers as a live performance. In this section we describe our practice livecoding lileBits, and compare
and contrast with typically textual livecoding (inasmuch as typical livecoding practice can be supposed to exist).

is demonstration (Noble and Jones 2014a; Noble and Jones 2014b) draws on the author’s experience livecod-
ing/performing lileBits with “Selective Yellow”, an experimental improvisation duo of indeterminate orthography
drawing on New Zealand’s heritage of experimental music practice (Russell 2012; McKinnon 2011), yet seeking to
recreate (electronically) all the worst excesses of free jazz with all the enthusiasm of antisocial teenagers meeting their
first MOS6851, while maximising the time required to set up equipment.

Selective Yellow performances typically employ a number of different synthesizers or sound generators as well as lit-
tleBits, ranging from digital toys (Kaosscilators, Buddhamachines) to semi-modular analogue and MIDI digital synthesiz-
ers, played with a variety of controllers (wind controllers, monome grids, knob boxes etc) — while eschewing a primary
role for digital audio workstation soware and computer-based virtual instruments. Selective Yellow is still a relatively
young project, probably only Grade 2 as evaluated by Nilson (Nilson 2007).

Livecoding with lileBits involves two main activities that are tightly interleaved in a performance, first building the
circuits by clipping modules together, and second “playing” the resulting synthesizer by turning the shas, thumbwheels,
switches, the “keys” on the keyboardmodule to actually generate sound. Generally a performance — or rather the portion
of the performance improvised upon lileBits — starts with the smallest possible sound-generating circuit, typically the
single unmodulated oscillator in figure 1. Once the lileBits are assembled (and the speaker module’s output patched
into the sound system) we can manipulate the oscillator’s pitch and output waveform. Depending on the context of
the improvisation, the possibilities of such a straightforward sound generator will be more or less quickly exhausted,
at which point the performer will disassemble the circuit, insert one or more additional modules (a second oscillator, a
filter, or perhaps a keyboard or sequencer module) and then continue playing the resulting circuit. In this overall paern,
lileBits livecoding is similar to some textual livecoding, where performers typically start with a single texture and then
build a more complex improvisation over time.

While the circuit building and playing are conceptually separate activities, an advantage of the physical nature (and
careful design) of the lileBits components is that the two activities can be very tightly interleaved. Indeed, with more
complex circuits (or more than one Synth Kit) its is quite possible to keep part of a circuit playing and producing sound
(such as a sequencer driving an oscillator) while building/editing another branch of the same circuit — adding in a second
oscillator controlled by the keyboard module with an independent output route, perhaps, or adding in a modulation path
to a filter that is already making sound in the main circuit. Again, this overall dynamic is also found in some textual
livecoding performances (see e.g. the SuperCollider jitlib (Collins et al. 2003)). Of course, because of the underlying
simplicity of the analogue synthesizer embodied within the lileBits modules, the sounds produced by lileBits Synth
Kit are much less complex than the sounds that can be produced by a general-purpose laptop running a range of digital
synthesis or sampling (virtual) instruments, although, being purely analogue, they have a piercing tone all of their own.

In the same way that programmatic live coders generally display the code on their laptop screens to the audience of
the performance (Collins et al. 2003), Selective Yellow projects an image of the desk or floor space where the lile bits
circuits are being assembled. e projected image not only seeks to dispel “dangerous obscurantism” (Ward et al. 2004)
but also to illustrate how the source is being generated - especially as some modules include LEDs as feedback to the
performer. e sequencer module, for example, lights an LED to indicate the current sequencer step, and other lileBits
modules can also be used to provide more visual feedback on circuits where that is necessary.

is projected display seems particularly useful for audiences when the performer is “debugging” their circuit (live). Here
again the physicality of the lileBits modules comes to the fore, so there is something for the audience to see: the easiest
way to debug a lileBits circuit is just to pull it apart, and insert a speaker module aer each module in the circuit in turn,



listening to the sound (if any) being output by each module. Oen this lets the performer understand (and the audience
to notice) that there is no sound output from a lileBits circuit, allowing the performer either to readjust the module
parameters, or to re-assemble the circuit in a different design, if not producing the desired sound, at least producing
something.
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ABSTRACT

is paper introduces a web-based integrated design environment named “TextAlive Online” that supports creating
Kinetic Typography videos synchronized with songs available online. It is the hybrid of a content authoring tool and a
live programming environment. rough its development, we investigate the interaction design that most benefits from
the interactive user interfaces used by designers and programmers, as well as the collaborative nature of the open-source
culture on the web. is system is accessible at textalive.jp and the interactive “live” version of this paper is available at
textalive.jp/paper.

1. Introduction

e Internet has allowed many people to express their creativity in the connected world. e open-source culture has
altered the way of content authoring. For instance, the Creative Commons license made it easy for creators to author
derivative content from existing one. Many songs and their derivative content are uploaded onto websites like Sound-
Cloud and YouTube. However, they are designed as a platform for distributing content, not for authoring it.

Programmers live in a far more advanced world in terms of content authoring. ey can easily collaborate with others by
forking repositories, sending pull requests, pushing back changes, etc. Recent Web-based Integrated Development Envi-
ronments (WIDEs) integrate such online activities into the IDEs, supporting the users’ collaborations. Live Programming
is another important technique that has recently aracted aention and been implemented in various IDEs, helping the
programmers’ content authoring. It provides a fluid programming experience by continuously informing the user of the
state of the programs being developed.

We foresee that this programmers’ way of content authoring is powerful yet general enough to be applied to various
types of content authoring. At the same time, the typical workflow of today’s programmer is not only focused on
designing algorithms but also involves more data organization and manipulation. ere is prior research on development
environments with support for such workflow. Representative examples include Gestalt for machine learning (Patel et
al. 2010), DejaVu for interactive camera applications (Kato, McDirmid, and Cao 2012), VisionSketch for image processing
applications (Kato and Igarashi 2014), Unity for game applications, and web-based live coding environments for music
and video improvisation such as Gibber (Roberts et al. 2014) and LiveCodeLab (Della Casa and John 2014). Content
authoring and programming environments are colliding with each other. erefore, it is important to design a content
authoring environment that supports both data manipulation and live programming.

is paper introduces TextAlive Online, which allows a user to create Kinetic Typography videos interactively with live
programming on a standard web browser. Kinetic Typography is a technique for animating text, which is known to be
a more effective way to convey emotional messages compared to static typography. Our system supports the creation
of Kinetic Typography videos that show the lyrics of a song synchronized with its audio content accessible on the web.
While many live coding environments focus on improvisation of music, our system focuses on providing a platform on
which the user can elaborate on creating videos.

anks to its web-based nature, the system can retrieve the specified audio content, analyze and estimate vocalized
timing of all characters in the lyric text. en, the estimation results can be cached and corrected collaboratively by
several different people. A JavaScript code editor is embedded in the system along with the general graphical user
interfaces (GUIs) for video authoring. JavaScript programmers can create, edit, and share algorithms for text animation,
which are called “templates,” with others. Please note that many designers are now casual JavaScript programmers as
well.
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In this paper, the core concept behind TextAlive Online is explained. Before we developed TextAlive Online, we had pro-
totyped a Java-based desktop application named TextAlive Desktop that follows the concept and runs on a local machine.
e next section introduces the interaction design shared between TextAlive Desktop and Online. en, the unique fea-
ture of TextAlive Desktop with the results of the preliminary user study are briefly explained. is experience led us to
believe in the potential impact of making the system web-based. Although rewriting a standalone desktop application
to run on a web browser supported by a server-side backend required tremendous engineering effort, TextAlive Online
opens up new content authoring possibilities for the web on the web. e following section explains its unique user
experience. en, related work is introduced, followed by a discussion and our conclusion.

Figure 1: TextAlive Desktop and TextAlive Online are both live programming environments for creating Kinetic Typography
videos that share most of their GUIs. TextAlive Online enables a more collaborative way of content authoring, requires a
server-side backend, and raises interesting research questions.

2. Videos as Pure Functions of Time

Digital videos are usually created with content authoring tools such as Adobe Aer Effects, Adobe Premier andWindows
MovieMaker. A content authoring tool saves information of a video as a project file that has references to external files
including images, videos, and audio. When a video project is exported as a rendered video file, the tool generates tens
of images per second with a particular resolution by calling rendering routines for every frame.

While ordinary video files have particular resolution in time and space, there are videos that potentially have an infinite
resolution in time and space; object positions can be acquired by calculating interpolation between key frames and object
shapes can be specified as vector graphics. In other words, a certain kind of videos can be represented by a pure function
without any side effects that takes the current time as its argument and returns the rendering result. e demoscene and
megademo are prior aempts at creating fascinating videos from code, but their code usually has heavy side effects over
time and cannot jump to arbitrary time. Various live coding environments allow the programmer to define a function of
time that outputs a visual scene, but most of them focus on improvisation. As a result, the scene is oen ephemeral and
transformed along time through live coding.

In TextAlive, a kinetic typography video is represented by a collection of pure functions of time with several parameters
that can be customized through interactive GUIs. Since lyric text contains repetitions and a video contains multiple parts
with similar effects, it is desired that a function for a text unit can be reused for another text unit. erefore, instead of
defining one huge function that renders everything on the video, we introduce a structure of functions – one function
per each text unit (a phrase, word, or character) of lyric text. e functions are represented by instances of classes, which
we call “templates,” with particular parameters. As a concrete example of how these information is stored, please see
textalive.jp/videos/20?format=json, which contains links to external resources, including songs, lyrics, and versioned
template definitions and their parameters. For each timing, the video image is rendered by calling a method for all of the
template instances. Most of the instance methods immediately return without doing anything since they are assigned to
text units that are hidden at the specified timing. e rest of the methods modify the rendering parameters of text units to
place and reshape them. An example of template definition can be found at textalive.jp/templates/KaraokeColor, which
changes the color of assigned characters. If a method call takes too long time, the corresponding template is disabled
and will be re-enabled when the programmer updates the template definition.
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3. Interaction Design

e user first inputs a song and lyric text to the system. en, the system estimates the vocalized timing (the starting
and ending of the vocalization) of every character in the lyric text. With this information, a playable kinetic typography
video is automatically composed and opened in the graphical video editor. us, this system provides the user with
this concrete example to start working on at the beginning instead of the empty canvas provided by the general video
authoring tools.

As shown in Figure 1, the main window of TextAlive consists of 1) a Stage interface that shows the editing video, 2) a
Timeline interface specifically designed for the intuitive timing correction of the given text units (phrases, words, and
characters), and 3) an Editor interface that allows for choosing and tweaking the templates that define the motion of
the selected text units. Casual users and designers can create videos in their style using these GUIs. ough, choosing
the text animation from the existing templates limits the flexibility of the resultant videos to a certain extent. TextAlive
provides a text-based code editor for live programming of the template definitions to overcome such a limitation.

e text-based code editor is tightly coupled with the aforementioned graphical interfaces. e user can select text units
using the Timeline interface, click on one of the assigned templates, edit its motion algorithm, and update the video
without needing to pause the music playback. Moreover, part of the Editor interface is dynamically generated from
the results of static code analysis of the source code. For instance, when the user annotates a member variable with
the comment @ui Slider(0, 100), a slider is populated. It can dynamically change the field values of the template
instances assigned to the selected text units. Such GUI components make it easy for the programmer to develop and
debug templates iteratively. Moreover, it also helps other people who use the template, including designers and casual
users who cannot or do not want to read nor write code.

4. TextAlive Desktop

TextAlive Desktop is the first system that follows the core concept and implements the interaction design described in
the previous section. As a preliminary user study, we provided TextAlive Desktop to seven participants with different
backgrounds (designers, programmers, and casual users). en, we asked them to create Kinetic Typography videos
using their favorite songs. While the prior publication introduces the system and the study in detail (Kato, Nakano, and
Goto 2015), this section summarizes the lessons learned that motivated us to develop the Online version.

4.1. Programming Needs Structured Data

e user needs to wait for the completion of the timing estimation for the song and lyrics pair before they can start
creating a new video. If the pair has been previously analyzed, it is possible to reuse the cached data. When the analysis
is complete, the estimated result typically contains errors that need to be corrected manually. Such timing correction is
important for the Kinetic Typography videos that should be well synchronized with the songs.

e data resources used in the programming should always be clean, structured, and easy tomanipulate from the program-
mer’s perspective. e synchronization of a song and its lyrics is considered data manipulation that creates structured
data from the raw materials, which is referenced by the template source code. In addition, creating high-quality videos
in TextAlive requires an iterative cycle of the data manipulation, programming, and playback. While live programming
techniques can reduce the programming burden, this kind of data manipulation might remain as the boleneck in the
iterative cycle. erefore, it is considered important to make integrated design environments in which the user interfaces
are tightly coupled for the data manipulation and live programming.

4.2. Designers Want to Design, Programmers Want to Code

TextAlive Desktop is the hybrid of an interactive graphical tool and a live programming environment. We assumed that
many designers are now capable of writing code, and thus, can benefit from the live programming part of TextAlive.
However, during the user study, we observed a clear tendency for the designer participants (and, of course, casual users
without prior knowledge of programming) to hesitate opening up the code editor. ey wanted more predefined and
ready-for-use templates. In addition, combining multiple templates for a single text unit seem to be difficult for the users.
It is because the results are oen unexpected and there is no hint to look for visually pleasing combinations.

On the other hand, the programmers could write various algorithms for text animation but were not always interested
in creating a complete video. While all the participants welcomed the capability of the integrated environment, collabo-
rations between people with different backgrounds are found to be the key to making the most use of it.
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5. TextAlive Online

Given the lessons learned from the deployment of TextAlive Desktop, we built TextAlive Online, a web-based application
with which people can collaboratively author kinetic typography videos. e resulting system is available at textalive.jp.
While the main interface consists of almost identical user interface components to the desktop version (Figure 2), there
are online-specific features and improvements as explained in this section.

Figure 2: TextAlive Online provides three user interfaces for editing Kinetic Typography videos.

5.1. Everything is Shared and Version-Controlled

With TextAlive Online, the user just needs to search for and choose a song from one of the music streaming services at
textalive.jp/songs (currently supporting SoundCloud, YouTube, a MP3 file on the web, and other several music streaming
services) and provide its lyrics by pointing to a URL (currently supporting a TXT file and some websites with specific
HTML formats) to start creating a Kinetic Typography video. If the song was not previously analyzed, the user is told to
wait for several minutes. Otherwise, the user can instantly see an automatically-generated Kinetic Typography video.
Timing information about the vocalization of phrases, words, and characters can be corrected at any time, even during
video playback. en, the user can commit the timing information to share it with other users. In this way, TextAlive
Online supports creating structured data collaboratively that is used for programming text animation.
A Kinetic Typography video on TextAlive Online consists of the following information: 1) URLs to the song and lyrics,
2) the structure of the lyrics, which is a tree of the text units (phrases, words, and characters), and 3) a list of assigned
templates and their parameter values for each text unit. ese set of information is represented by a JSON object and
is version-controlled on the website. In fact, not only the videos but also the estimated timing information, correction
history, and template definitions are all version-controlled, enabling to fork derivative work and to rollback flawed edits.
Saving a new template definition is as easy as clicking the “Commit” buon beside the update buon that locally updates
the definition (Figure 2, Code Editor).

5.2. Some Templates Make Use of Other Templates

In the Desktop version, the user is allowed to assign multiple templates to a text unit for flexible design of kinetic
typography. For instance, a template for fading in and out text and a template for moving text can be assigned to the
same phrase to combine both effects. However, it seemed difficult for the user to find a good combination of multiple
templates and the featurewas not used frequently. To simplify the interface, TextAlive Online currently limits the number
of templates that can be assigned to a text unit to one. In addition, to maintain the reusability of templates, it allows the
programmer to import and use other templates in a template definition.
textalive.jp/templates/DefaultAlignment is one example that calls a method of another template. e KaraokeColor

is dynamically loaded with the require(templateName) function (which is similar to the popular RequireJS library),
instantiated, and its highlight method is called on for coloring each character.

6. Related Work

is section mainly covers the prior work in the literature for human-computer interaction and live coding.

http://textalive.jp
http://textalive.jp/songs
http://textalive.jp/templates/DefaultAlignment/47
http://requirejs.org


6.1. Tools for Content Authoring

Various tools have already been proposed for creating Kinetic Typography videos, such as toolkits for programmers (J.
C. Lee, Forlizzi, and Hudson 2002) and GUI applications for end-users (Forlizzi, Lee, and Hudson 2003). However, most
of them aim at augmenting text-based communication, and none of them provide support for synchronizing text with
audio. erefore, they rarely have the timeline interface necessary to seek the time and edit timings precisely.

More general video authoring tools are equipped with a timeline interface such as Adobe AerEffects. ey typically
contain scripting engines in which the user can write code (called “Expression” in AerEffects) to control the property
changes over time. Although, it is just one way of specifying the visual properties, and thus, do not output video as a
clean, structured object. ere are also tools for interactive VJing, which is creating videos in real time synchronized
with music. For instance, artz Composer and vvvv have been used for such purposes. Other examples are introduced
in the next subsection. While the current implementation of TextAlive focuses on authoring videos and does not support
improvisation of visual content, it is an interesting future work.

Live coding environments for music typically focus on improvising music and the resulting performance can only be
recorded as static audio or video. On the other hand, renoscope (Magnusson 2014) is a live programming environment
to describe musical scores. It is similar to TextAlive in that both help the user to create structured data (score or video)
which can be modified later, either by the original author or other people.

6.2. Live Programming of Immediate Mode GUIs

TextAlive renders each frame of the video by repeatedly calling on the animate(now) method of all template instances.
e programmer’s code is responsible for building the scene from scratch for every frame. is type of user interface
rendering is called immediate mode GUIs (related discussion at Lambda the Ultimate), while the frameworks for retained
GUIs such as Java Swing expose APIs that essentially manipulate a scene graph composed of GUI widgets with hidden
state information inside.

Typical GUI applications adopt the retained GUIs since they are considered convenient, but they have certain downsides
such as difficulty in tracing the state transitions. is is particularly problematic for live programming. As a result,
many of the existing live programming environments only support immediate GUIs. Notable examples that run on a
standard web browser include Gibber (Roberts et al. 2014), LiveCodeLab (Della Casa and John 2014) and TouchDevelop
(Burckhardt et al. 2013).

6.3. Live Programming with Parameter Tuning Widgets

Editing a text-based source code is oen cumbersome since the programmer needs to type the parameter values many
times to find the best value in order to make the full use of live programming. Providing sliders for this purpose is a
common practice in this field as seen in recent Processing extension.

Impromptu (Sorensen and Gardner 2010), Overtone (Aaron and Blackwell 2013), and renoscope (Magnusson 2014)
are live coding environments for music which can bind parameter values not only to GUI sliders but also to sliders
on a physical control board. Unity is a game engine that is capable of instantiating widgets without killing the entire
application. VisionSketch (Kato and Igarashi 2014) takes a similar approach and allows the programmer to draw shapes
on the input images to interactively change the parameters passed to the computer vision algorithms.

7. Conclusion

We propose TextAlive Online, an online content authoring environment with support for live programming. It is the
hybrid of a content authoring tool and a live programming environment, each of which has been separately evolved
and is good at interactive data manipulation and intuitive programming, respectively. It is the successor of TextAlive
Desktop, which is a desktop application and whose user study revealed the need for a web-based backend that features
cooperative data manipulation, live programming, and video authoring.

e current implementation allows for embedding a created video into a web page, as demonstrated in the top page.
Kinetic Typography is applicable not only for songs and lyrics but also for more general text information. It might be
interesting to allow external developers to import motion algorithms from TextAlive Online and use them for animating
text on their web pages. In addition, our future work includes improvisation of kinetic typography videos that enables a
“text jockey” who creates text animation on-the-fly similar to a disc jockey and visual jockey.

http://www.adobe.com/products/aftereffects.html
http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html
http://vvvv.org/
https://vimeo.com/63335988
http://lambda-the-ultimate.org/node/4561
http://gibber.mat.ucsb.edu
http://livecodelab.net
http://junkato.jp/touchdevelop
http://funprogramming.org/139-Tweak-values-while-a-program-runs.html
http://impromptu.moso.com.au
http://overtone.github.io
https://vimeo.com/63335988
http://unity3d.com/
http://junkato.jp/visionsketch
http://textalive.jp


While there have been proposed many live coding environments that output a visual scene as well as audio, existing
environments typically put emphasis on improvising the scene from scratch in front of the audiences. Such environments
are optimized for real-time live performance that is ephemeral and can only be recorded as videos with a static resolution
in time and space. On the other hand, TextAlive Online is a platform on which the user can create and play videos that
are essentially a collection of pure functions of time and potentially have an infinite resolution in time and space. e
videos are always rendered on-the-fly by calling the functions. Since their information is kept structured, anybody can
create derivative work from them, either by GUIs or by writing code. We believe that there is much potential in live
coding techniques not only for live performance but also for collaboratively elaborating on creating various kinds of
media content.

8. Anowledgements

is work was supported in part by JST, CREST. TextAlive Online uses Songle Widget API for audio playback, whose
main developer is Takahiro Inoue. It also relies on Songle web service for retrieving vocalized timing of lyric text and
other information regarding the audio track, whose main developer is Yuta Kawasaki.
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Performance abstracts

1. Concert A, Monday

CePRA special session with instrumentalists Anne Veinberg and Greta Eaco.

Pianist Anne Veinberg is active as soloist, improvisor and ensemble player in Europe and Aus-
tralia, and will take part in four collaborations in the opening performance session of ICLC.
With her keen interest in contemporary music, Anne regularly collaborates with composers
and has premiered numerous works. She is particularly interested in exploring works for pi-
ano and live electronics/live coding and the more theatrical contemporary piano repertoire.
As a collaborative pianist, Anne is a member of Duo Kolthof/Veinberg, Duo Neshome, Duo
H|A, Ensemble SCALA (microtonal music) and Off<>zz (livecode/piano).

Classically trained, Anne studied at the Sydney Conservatorium High School, obtained her
Bachelor in Music from the University of Melbourne, and completed her Master of Music at the
Conservatory of Amsterdam. In September 2015 she will begin her PhD research; “Keyboards
Unite: Exploring chamber music possibilities between a pianist and live coder” as part of the
DocArtes program in Ghent.

Greta Eaco’s biography is not available for the compilation of the preliminary proceedings, please refer to the website
for details.

1.1. Gopher - Marcel Wierx and Anne Veinberg

Gopher is the second of a series of compositions for Disklavier that are to be performed as
a duet between pianist and live coder. In this composition the system is used to generate
notes on the piano which are performed as harmonics by the pianist. Pitch and rhythm
are treated as separate entities, enabling the live coder to generate complex shiing
paerns using relatively simple commands. Gopher is inspired by the fairground game
in which the player hammers the heads of plastic gophers as they pop up out of holes
in a random sequence. e pianist plays harmonics on the strings of the piano in much
the same way, and in that sense the piece can be seen as a game between the pianist and
live coder.

Marcel Wierckx is a sound and video artist who creates music and image for concert, film, theatre and dance. He recently
created the music and sound design for Chunky Move’s critically acclaimed dance production An Act of Now which was
awarded the Age Critic’s Award in 2012. His work is performed at major festivals and conferences around the world,
including the International Computer Music Conference, Live.Code.Festival, ISCM World Music Days, and STRP. Wierckx
is currently lecturer in Live Electronic Music at the Amsterdam Conservatory of Music, and Composition and Soware
Design at the Utrecht School of Music and Technology. hp://www.LowNorth.nl

1.2. Improvisation for Pianist (Disklavier) and Live Coder - Juan A. Romero and Anne Veinberg

e improvisation consists of mutual feedback using the Disklavier as an acoustic and
mechanical interface between the pianist and the live coder. Phrases and notes will
be recorded and algortihmically transformed and played back throught the same device
interfering and interacting with the player. Some sound synthesis will be also live coded
to expand and adapt the sound of the piano and the playing style of the perfomer.

Juan A. Romero was born 1982 in Medellín, Colombia. He is member of the live coding
band Benoît and the Mandelbrots and the audiovisual performance duo Ganzfeld. At the
moment he is a doctoral candidate and research assistant at the IMWI (HfM Karlsruhe).

http://www.anneveinberg.com
http://www.gretaeacott.com/


1.3. Encoding the Marimbist - or Magnusson and and Greta Eacott

In this performance the marimbist Greta Eaco will perform real-time generated musical
notation in the form of code. e coding language called CMU (Code Music Notation) is
a notational language for human interpreters and thus different from traditional CUI’s
(Code User Interfaces) wrien for machine interpreters. CMU is an object oriented pro-
gramming language with a C-family syntax and dot notation, also supporting functional
approaches, such as first class functions and recursion.

or Magnusson is a live coder and has created the ixi lang and renoscope live coding
systems. He lectures in Music and convenes the Music Technology programme at the
University of Sussex, Brighton.

Greta Eaco is a composer, percussionist and marimba player living in Copenhagen.

1.4. Type a personality - Ni Collins and Anne Veinberg

Type a Personality is a score for pianist with interwoven typing as well as live coded
synthesis engine electronics part. e control sequence for the electronics part is a direct
result of Anne’s scripted typing; the inevitable errors in typing certain keys under time
pressure, and the inter-key time intervals, directly set the state and memory values of
the audio engine. e exact text to type out is different for each performance, but watch
out for a possible extract from the TOPLAP manifesto.

e work is a da capo aria, where the second play through of the material involves additional embellishment. During Type
a Personality’s performance, audio is gradually collected for the concatenative synthesis, new audio in turn triggering
output from that engine based on the instruction code program typed out. Indeed, multiple synthesis/processing state
engines can be driven from the combination of audio, typed leers and typing timing collected, providing a complex
mixture of acoustic and electronic, machine listening and non-programmer live coding.

NICK COLLINS is Reader in Composition at Durham University. His research interests include live computer music, musi-
cal artificial intelligence, and computational musicology, and he has performed internationally as composer-programmer-
pianist and codiscian, from algoraves to electronic chamber music. As a composer, he investigates new possibilities in
autonomous interactive music systems performing with acoustic musicians, pure computer works such as microtonal
generative music, and even the occasional piano sonata (hp://composerprogrammer.com/music.html)

1.5. Off<>zz Live - Off<>zz

Off<>zz is a laptop and piano/toy piano duo featuring Felipe Ignacio Noriega and Anne
Veinberg respectively. All our performances are improvised and our style is guided by
our search for bridging the gap between instrumental and live coding music making.
Felipe codes from scratch in supercollider and this in part guides the speed of musical
development in our improvisations but is altered due to the presence of an acoustic
instrument, namely the piano. We move between blended piano/computer soundscapes,
to vibrant grooves, contrary expressions which eventually morph together and musical
explosions.

Off<>zz is unique in its contribution to the live coding scene as an ongoing project which
explores the possibilities between live coding and acoustic instrumental performance.
ere are many differences, advantages and disadvantages between music making via
live coding and music making via piano. We aim to utilize the good of each and mask the
weaknesses through supporting each others musical actions. Our classical background
leads to a style that moves between avantgarde, minimal, post modernist and electro groove music.

Felipe and Anne have been collaborating for several years, from more conventional contemporary music works to
Off<>zz, a piano and live-coding duo. ey have performed at various festivals including Smaakt naar Muziek (Ams-
terdam), La Escucha Errante at ZAWP (Bilbao) and undertook a residency at STEIM in November 2013.

Felipe Ignacio Noriega is a composer and laptop artist born in Mexico City and now living in Amsterdam, e Netherlands.
He collaborates for various seings where a common research is the importance of movement, theatricality, and visual
fantasy achieved through the aid of cheap, domestic technologies. He is co-founder of Amsterdam Chamber Opera, Bo

http://www.ixi-audio.net/thor/
http://www.gretaeacott.com/
http://composerprogrammer.com/music.html
http://felipeignacio.info/offzz


is Burning, Panda Zooicide and DTMF signaling - collectives that explore music, opera, theater and new methodologies
of interdisciplinary collaboration and inter-communication.

Felipe Ignacio received the 1st prize of the composition competition from the Tromp Percussion Festival Eindhoven in
2010 and the Publieksprijs of the 2scoreMusiceater competition in 2012 in Enschede, for his first opera LAKE. He grad-
uated Cum Laude from the Masters in composition at the Conservatorium van Amsterdam in 2013 and is compostition
winner of the Young Artist Fund Amsterdam 2015. www.felipeignacio.info

2. Concert B, Monday

2.1. BEER - Birmingham Ensemble for Electroacoustic Resear

We propose to perform two live-coded works, Swarm 1, by
Norah Lorway, and SwitchBlade, by Sco Wilson + BEER.
e former piece involves improvising through a loosely
pre-determined structure using supplied templates and
materials, which are then modified and extended by the
ensemble. In the laer each musician live codes 3 layers
of different types, which are chosen and combined using
a central control algorithm, itself live-coded.

BEER, the Birmingham Ensemble for Electroacoustic Re-
search, was founded by Sco Wilson in 2011 as a project to
explore aspects of realtime electroacoustic music making.
Particular interests include networked music performance
over ad hoc wi-fi systems, and live coding (programming
music in real time using algorithms that can be altered
while they are running). In keeping with post-free jazz developments in improvisation (e.g. Zorn, Braxton), we create
structures in soware that impose limitations and formal articulations on the musical flow (with networked soware
systems serving as intervention mechanism / arbiter / structural provocateur par excellence). Musical influences run the
gamut from Xenakis to Journey. Past and current members have include Konstantinos Vasilakos, Norah Lorway, Tim
Moyers, Martin Ozvold, Luca Danieli, Winston Yeung, and Sco Wilson.

2.2. e Augmented Live Coding Orestra - Fabrice Mogini

is is a performance in ‘live composing’, using live coding and live algorithms to:

• control a library of orchestral samples (the Live Coding Orchestra).
• control and process pre-wrien audio which was created during previous coding

session with a similar setup.

e aim is to start with an original note series, based on the leers of a composer’s
name; then develop and orchestrate this material into a live composition, taking into
account the audio played at the same time, which will be re-harmonised, arranged and
orchestrated, thus augmenting the audio with the live coding orchestra and the other
way round, augmenting the orchestra with the audio.

Fabrice was born in Cannes, France. First aracted to Classical, Jazz and progressive
Music, he encountered generative music and algorithmic composition in 1998, while
studying on the London Sonic Arts course where he learnt SuperCollider. Fabrice has
been involved in Live Coding since 2002, originally as a means to have beer control
over algorithmic processes and as an aempt to link improvisation and computer-aided
composition. Fabrice is a lecturer in Music based in London and also works as a freelance
Music composer and producer specialising in music for film and television.

http://www.birmingham.ac.uk/facilities/ea-studios/research/beer.aspx
http://fabricemogini.com


3. Club A, Monday

3.1. Warp Hole Sounds - Warp Hole Sounds, AV Torres

“Warp Hole Sounds” is an algorithmic exploration and an audio visual experience of
the non-trivial phenomena, which in theory is possible inside these unseen and unex-
perienced corners of our universe. It pursuits a more embodied understanding of the
behaviour of the physics inside or close to these bizarre spaces.

rough computer algorithms, Andres simulates strong gravitational fields which evolve
in time by being nourished by particles (light, maer, energy and sound). e illusive
infinite freedom from algorithms allow to simulate and to tweak several conditions from
these theoretical places, provoking behaviours that some times cannot be computed or
previously estimated. A series of sonic and visual experiences arise from the never end-
ing evolution of these simulated wormholes.

Born in Mexico City in 1985. Andres Villa Torres has a Design background and a long relationship with Music. He
likes to explore the borders between the digital, the material and the “real” serving himself from diverse interactive and
non-interactive media, technology and algorithms.

3.2. Feedforward -an electric guitar and live code performance - Alexandra Cárdenas

Feedforward is a system, a cyber instrument composed by performer, electric guitar and
laptop. e guitar sounds trigger previously wrien code and will make the laptop live
code itself. e performer reacts to the choices of the computer. e initial seings
of the system are a composition that is open to improvisation for both the performer
and the laptop. Synths created in SuperCollider will analyse the sound of the guitar
and trigger the autocode function of IXI lang. is will be an interaction of preexistent
code and new born code, of preexistent sounds and new born sounds. Synthesis and
transformations of the electric guitar sounds will make a piece that emerges from the
electroacoustic tradition merging it with the noise tradition through an automatic live
coding generative environment.

Composer and improviser of music ranging from writing orchestral works to improvis-
ing with electric guitar and laptop. Using mainly the soware SuperCollider to turn her
computer into another musical instrument, her work has focused recently in creating
pieces with Live Electronics and exploring the musicality of coding and the algorithmic behaviour in the music. An
important part of this exploration is the practice of live coding. Currently she lives in Berlin, Germany and studies the
masters Sound Studies at the University of the Arts. www.tiemposdelruido.net

3.3. ain reaction - Fredrik Olofsson

In chain reaction I write small programs for Arduino boards and make them send use-
less serial data directly to the speakers. Depending on the type of data being sent, at
what baud-rate and how the improvised lile C programs flow, I get different rhythms,
melodies and a variety of noises.

Fredrik Olofsson is educated in music composition at the Royal Music Academy in Stock-
holm, Sweden. Ever since his graduation 15 years ago, he has worked with developing
soware and electronics for interactive installations. He has also travelled the world
performing electronic music and live video - both solo and in different constellations.
Currently, alongside commissions, residencies, collaborations, workshops and perfor-
mances, he is doing contract work for the project rhyme.no in Oslo, Norway and teaches
computational art at Universität der Künste in Berlin, Germany. hp://www.fredrikolofsson.com

3.4. Sonic Miner - Sam Aaron and Alan Blawell

http://www.andresvillatorres.com/?p=542
http://alexandracardenas.net/feedforward
http://fredrikolofsson.com
http://sonic-pi.net


Sonic Pi has become well-established as an educational platform in which live-coded
music can be used an element of early computer science education in schools. e Sonic
Pi Live and Coding project has also demonstrated the potential of live coding, using Sonic
Pi, as a contribution to the school music curriculum. Recent releases of Sonic Pi have
included support for controlling the external API of Minecra: Pi Edition - a version
of the popular Minecra open world game which runs on the low cost Raspberry Pi
computer, and also provides interfaces for code-based scripting. Although Minecra: Pi
Edition was originally designed to be controlled from a Python interpreter, the same API
can now be live-coded from within Sonic Pi.

is performance is an initial exploration of the potential for Minecra to be used in an
algorave context. Sam Aaron, developer of Sonic Pi, maintains a practice-led research discipline in which the educational
tools that he uses in classroom teaching are the same tools that he uses in public performance. e latest releases of Sonic
Pi (also available for Windows and Macintosh) therefore include the latest updates that have been developed to support
his own performance practice. is philosophy is consistent with music and arts education practices, in which it is
considered beneficial to provide professional quality materials even to students, wherever possible. In keeping with
this philosophy, we are therefore exploring the extent to which Minecra itself can become a performance instrument
for algoraves. Sam will be coding algorave music, while Alan Blackwell aempts to produce dance visuals through
algorithmic manipulation of the Minecra world. We hope that we can achieve networked synchronisation between
music and the Minecra world, to a degree that offers an immersive dance experience. Failing that, we will offer the
audience direct access to the Minecra view and/or avatar controls via wireless controllers, allowing them to engage as
co-performers in virtual space.

Sam Aaron is a live coder, computer science educator, and developer of the popular Sonic Pi live coding environment. In
addition to his online audience and performances with groups including Meta-eX, Poly_core and others, he has extensive
previous experience as a computer science researcher, and as developer (with Jeff Rose) of the Overtone live coding
language. His current research and participation in ICLC is supported by a generous donation from the Raspberry Pi
Foundation. Alan Blackwell is a researcher in human-computer interaction, with a focus on languages for visualisation,
digital media and end-user development. Everything he knows about Minecra was learned from his daughter Elizabeth,
but he has managed to write several academic papers on the topic! His participation in ICLC is supported by a grant
from the Boeing Corporation.

3.5. Auto - Canute

Yee-King plays a set of digital v-drums which trigger percussion sounds and longer, syn-
thesized sounds. McLean livecodes in the Tidal language, generating polyrhythmic pat-
terns, melodic synthesizer lines and some sampled vocal paerns. ey cover a range of
rave inspired styles including industrial techno, drill and bass, dubstep and so forth, with
occasional bursts of noise and free improv. e performance will be fully improvised,
and will experiment with introducing autocoding into collaboration between percussion-
ist and coder.

Canute is a performance collaboration between Mahew Yee -King and Alex McLean,
exploring improvisatory practice through programming languages and percussion. eir performances bridge techno,
drill n bass, and experimental free jazz improv.

Mahew Yee- King is a computer music composer and performer, and postdoctoral research fellow at Goldsmiths College,
where he works on a project to develop a social network for music learners. He has worked in a range of musics from
the use of agent based live improvisers through more straight ahead electronic music to free improv with jazz players.
He has performed live internationally and has recorded many sessions for BBC Radio. In the past his solo music has
been released on electronic music imprints such as Warp Records and Richard James’ Rephlex Records. Past collabora-
tors include Jamie Lidell, Tom Jenkinson (Squarepusher), Finn Peters and Max de Wardener. hp://www.yeeking.net/
hp://www.gold.ac.uk/computing/staff/m yee king/

Alex McLean is a musician and researcher based in Yorkshire, UK. Alex is Research Fellow in Human/Technology In-
terface and Deputy Director within ICSRiM, University of Leeds. He created Tidal, the mini- language for live coding
paern. He performs internationally as a live coder, including as one third of the long -lived band Slub with Dave Grif-
fiths and Adrian Ward. He coordinates promoters Algorave and algorithmic record label ChordPunch with Nick Collins,
and has co- organised around 80 Dorkbot electronic art events in Sheffield and London. Alex completed his PhD thesis
“Artist- Programmers and Programming Languages for the Arts” at Goldsmiths in 2011. He recently released Peak Cut
EP on Computer Club, in the form of a bootable USB key. hp://yaxu.org/ hp://music.leeds.ac.uk/people/alex mclean/

http://canute.lurk.org/


3.6. Live Coded Controllerism - Luuma

e piece will be a performative design of a new modular instrument. It will start with a
blank code page, and a diverse set of controllers. Over the course of the piece, I will live-
code the sound and controller mappings for an Algorave style improvisation, bringing
in new controllers from the collection as the piece develops. As the set progresses, an
instrument will take form, and the performance will move from coding to controllerism.
e piece harnesses the flexibility of livecoding to allow the design of an instrument
to evolve with the music. e piece will highlight the interplay between instrument,
mapping, sound and algorithm design.

Chris Kiefer is a computer-musician and researcher in musician-computer interaction.
He’s interested in designing digital music instruments using multiparametric sensing techniques and in improvising
electronic music. Chris performs as Luuma, and has recently been playing at Algoraves with custom made instruments
including malleable foam interfaces and touch screen soware. His music has been released on algorithmic music label
Chordpunch.

4. Concert C, Tuesday

4.1. living sound - Dragica Kahlina

e performance is a combination between live coding and instrumental music. e
sound journey is improvised, layered and has a strong focus on the timbral aspect of
music. Live coding works within a prepared, but dynamic framework that gives the
performer the freedom to change all aspects of the music spontaneously. e instrument
used is an Eigenharp Alpha an electronic controller with 132 buons that act as 3-axes
joysticks, a breath controller and 2 pressure stripes. e OSC (open sound control) data
from the instrument is used to communicate with the live coding environment on the
laptop. e live coding happens in Overtone, a music library that interfaces Clojure with
a Supercollider server. But the environment is more than that, it builds a living game
world behind the scenes. In this world sounds are living creatures with an AI-mind
of their own. e musician doesn’t necessary play notes anymore, but seeds the sound
creatures and interacts with them. Playing an instrument becomes playing with reactive
AI-organisms in a sound world. e environment is built, maintained and changed by
live coding and influences and changes the type of sound creatures that can be created and the music the audience hears.
Granular synthesis fits into this really well and is used for most of the sound.

Dragica is a sound artist interested in the intersection between programming, music and science. She uses mostly Clojure
with Overtone, Supercollider or Max/MSP played with a Eigenharp to create her improvised electronic sound journeys.
She composes music and designs sounds for games. Dragica has worked as a professional game programmer specialized
on AI. Her background is in theoretical physics.

4.2. To code a dadaist poem - Sean Cotterill

is performance is an evolution of a concept I explored for Rodrigo Velasco’s event ‘on-
the-fly codepoetry’ held in January 2015 (hp://cargocollective.com/onfcopoe/otfCp00).
For the performance I will be using live coding techniques to create cut-up poetry and
sound on the fly, reminiscent of the process described by Tristan Tzara in his work ‘To
make a dadaist poem’.

I will be accessing, spliing up and re-combining on the fly a large bank of poetry in
the public domain using SuperCollider (and displayed using Processing). e lines and
snippets of poetry will be sequenced using random and probabilistic programming tech-
niques to form an evolving, shiing new poem, which will develop throughout the duration of the performance. During
the performance I will also improvise live-coded sound using SuperCollider derived from the evolving poem, teasing out
semantic and mimetic relationships between sound and text, and in turn adapting the sequencing and usage of poems
according to the development of the music.

http://luuma.net
http://www.kahlina.com
https://vimeo.com/118433845


e performance has no set structure, I will begin sequencing and sound from scratch, and improvisation is the key
methodology underpinning the performance. I will, however, have a Processing sketch prepared as a ‘blank canvas’ to
receive sequenced poetry as strings via OSC in a flexible and dynamic manner, as well as displaying the sequenced poetry
in an aesthetically discerning manner.

I will also assemble banks of poetry and accompanying OSC addressing in advance of the performance SuperCollider
and use the modular SCVim editor and environment with completion and snippet addons in order to facilitate fast and
efficient improvisation during the performance, developing an improvised text and music performance ecology from the
ground-up in real time, as quickly as possible.

Sean Coerill is a musician, digital artist and live coder from Newcastle, UK, working in and around fields of experimental
sound, dance music, light, hardware & soware building, interactivity and inter-disciplinary practice.

Sean is a recent graduate of Newcastle University’s International Centre for Music Studies, where he studied improvisa-
tion, popular music, sound art and electronic music performance and computational music techniques. He is involved
in a number inter-disciplinary and musical projects such as coï¿¥ï¾¡pt, Mutual Process, RE/CEPTOR, State of Grace and
e Midnight Doctors as well as delivering digital arts commissions both in the UK and internationally for organisations
such as ZENDEH and ISIS Arts.

4.3. Wezen - Gewording - Marije Baalman

Wezen - translation:be, character, creature, essence, gist, nature, being, intelligence, also
orphans (2012-4; work in progress)

Wezen is a solo music-theatre work where I try to explore the relationship between
theatrical gesture and musical instrument, between the body and the sonic world.

Gewording (Becoming) is the first performance version where the link between physical
and sonic gesture is explored during a live performance, combining movement of the
body and live coding.

Marije has a diverse background in physics, acoustics, electronic music and sound art,
and performance. In her artistic work Marije moves between live performance, livecod-
ing, and interactive installations involving light and sound. Her focus is on composing of
behaviours and interaction modalities, creating processes driven by sensor data, rather
than fixed sound tracks. She has collaborated with various people, amongst which Al-
berto de Campo, Chris Salter, Michael Schumacher, Aakkalari Dance Company and
Workspace Unlimited.

5. Concert D, Tuesday

5.1. HTB2.0 - Kate Sicio

is dance piece is an exploration of live coded electronics and improvisational move-
ment. A dancer wears a custom garment of haptic actuators. ese actuators are programmed real-time via OSC to ‘buzz’
on the right and le sides of the dancer to indicate which side of the body the dancer will move. e score is being live
coded by choreographer while the dancer is responding to the haptic feedback. is piece explores live coding of bodies
and movement as output rather than a sonic or visual output as found in many live coding performances.

Dr. Kate Sicchio is a choreographer, media artist and performer whose work explores
the interface between choreography and technology. Her work includes performances,
installations, web and video projects and has been shown in Philadelphia, New York
City, Canada, Germany, Australia, Belgium, and the UK at venues such as Banff New
Media Institute (Canada), WAX Brooklyn (New York), FoAM (Brussels) and Arnolfini
Arts Centre (UK).

5.2. End of buffer - Repl Electric

https://www.marijebaalman.eu/?cat=30
http://blog.sicchio.com
http://www.repl-electric.com


My performance is a mix of improvisation and composed music and visuals. e primary
programming language used is Clojure a LISP based language running on the JVM. e
visuals are wrien with the OpenGL Shading Language and the music with Overtone
a client to the SuperCollider sound engine and finally a library I created myself called
MUD optimizing immediacy of expression. All of this is bound together using the Emacs editor, taking a common tool
used widely for programming and emphasizing its power and feedback in coding live.

ere is a deep connection between sound and visuals, experimenting with different ways of visualizing frequencies,
beats and time. My visual style is focused on simple 2d geometric shapes, playing with peoples assumption around the
solidity of these, progressively deforming with the flow of the music.

Abstraction is used in the code to create not just a useful domain specific language but plays with themes that inspired the
synths and visuals. My musical style is ambient with a focus on simple handcraed synths and multi voice progressions.
Taking the culture of open source to music all the performance code, and libraries used are open for all to see and change:
hps://github.com/repl-electric/cassiopeia

Joseph Wilk performs as Repl Electric. Binding light, sound and poetry to the fingertips. Taking the culture of open
source, the code is open for all to see and play: hp://github.com/repl-electric

6. Concert E, Wednesday

6.1. Slamming Street 01100110 - Afrodita Nikolova, Sam Aaron and Alan Blawell

Slamming Street 01100110 is an experimental performance collaboration involving po-
etry and live coding. Our goal is to explore the borderlands between computation and
human experience; between media and algorithms; and between structures and interpre-
tations as a creative intercultural encounter. Using Linton Kwesi Johnson’s dub poem
‘Street 66’ as a shared starting point, Sam Aaron, Afrodita Nikolova and Alan Blackwell
have worked together to understand their experiences as improvisers and boundary-
crossers. Encounters with authority, as framed by national cultures on the interna-
tional stage, suggest resonances between 1970s Brixton, 1990s New Zealand, and the
Macedonia of today. In the live coding context, the introduction of poetry performance
(Nikolova is a Macedonian poetry slam champion) raises challenging questions about
the nature of text, and the experience of voice, when juxtaposed with sonic structures, sampled sound and processed
media imagery.

Technical set-up is as follows: Sam performs with Sonic Pi, the live coding environment that he has developed with
support from Raspberry Pi Foundation, in a recent release augmented with support for live audio input that is used here
for processing Afrodita’s voice. Alan performs with Palimpsest, a visual language that he has created for live algorithmic
image transformation. Sam and Alan’s previous collaboration as “e Humming Wires” was originally formed to investi-
gate the ways in which live coding undermines considerations of copyright in mashup and homage, through improvised
re-codings of Red Right Hand by Nick Cave and the Bad Seeds. Subsequently used as the basis for networked algorave
performance, use of the same systems (with some performance-oriented enhancements) in Slamming Street 01100110
gives us an opportunity to push genre and media boundaries through working with text and human voice.

• Afrodita Nikolova - text/voice
• Sam Aaron - sound/Sonic Pi
• Alan Blackwell - image/Palimpsest

Afrodita Nikolova is a PhD student in Education at the University of Cambridge, having previously studied English liter-
ature and arts creativity education. She is a prize-winning poet, interested in poetry slams, and is the first Macedonian
student awarded the Gates Cambridge scholarship. Sam Aaron is a computer scientist and live coder, who performs con-
stantly around the UK and internationally. He developed the popular Sonic Pi system, and is commied to helping young
people understand the creative opportunities in computer science. Alan Blackwell is Reader in Interdisciplinary Design
at the University of Cambridge Computer Laboratory. Alan and Afrodita’s participation in ICLC has been generously
funded by the Boeing Corporation, and Sam’s research is funded by a donation from the Raspberry Pi Foundation.

6.2. Mind Your Own Business - Birmingham Laptop Ensemble

http://jonashummel.de/archives/projects/myob/


Mind Your Own Business (2013, MYOB) is a piece which entangles different elements
and roles in an electronic sound performance amongst a group. Noone can play any
sound without anyone else‘s activity. Each performer only has partial control over the
resulting music: rhythm, pitch, timbre and manipulative effects are the different roles.
Adding to the confusion the ensemble then rotates the designated roles throughout the
duration of the piece. Everything is livecoded which poses yet another challenge in view
of differing keyboard layouts. e music is improvised based on a starting set of three
synthesized sounds but everything can be changed at anytime.

How can something musically interesting evolve in the given time slot of three minutes?
Can one ‘mind their own business’ yet work towards a continuity from the predecessor‘s
code while integrating the things happening on screen and in the space around? MYOB exposes the complexity of
algorithms and networks for the participating performers in a live performance situation to create a state of disorientation.
is represents in some ways the distance and alientation that the machine introduces for human music performance on
stage: a strongly cognitive activity where one is never really in control.

e piece was built using the ‚Republic‘ quark of the SuperCollider (SC) programming language which enables networked
livecoding of music.

Jonas Hummel (author) is a sound engineer, experimental musician and currently a PhD researcher, at Manchester
Metropolitan University, England. His research interests include collaboration in network music situations, group im-
provisation with custom-built interfaces and instruments and the agency of technological objects in real-time computer
music performance. Previous projects include ensembles of networked radios (Translocal Rundfunk Orchestra) and
laptop computers (PowerBooks UnPlugged, Birmingham Laptop Ensemble, Republic111). He also worked in various
documentary film projects for sound recording and design. www.jonashummel.de

BiLE (Birmingham Laptop Ensemble) are a collaborative group of composers and performers of instrumental and elec-
troacoustic music. Live performance and improvisation are at the core of BiLE which has an open aitude towards
experimentation with sound, allowing members of the group to bring their own tools and musical experience to the
ensemble. is enables composers with varied backgrounds to contribute to every aspect of the performance. BiLE like
to experiment with new ideas and technology and are continually developing and intergrating new aspects into their
performances. e current core team of performers are: Charles Céleste Hutchins, Shelly Knos, Holger Ballweg and
Jonas Hummel. BiLE perform with live visuals by glitch artist Antonio Roberts. www.bilensemble.co.uk

6.3. vida breve - tristeTren

vida breve’ is an audiovisual feedback dialog between the Ollinca’s guitar processed
by SuperCollider and drawings processed by Processing then live coded in Tidal, also
Ollinca use her voice to establish an algorithmic - analog dialogue, the approach is to
generate a live coded guitar feedback loop, playing and improvising analog sounds in
real time to turn and cut these processes and loudly redirected by writing algorithms in
real time.

e brief history of Ollinca,

• 1988, Mexico City.
• 2008, Bachelor Degree, Visual Communication Design in the FAD of the UNAM

with a major in Audiovisual and Multimedia Design.
• 2011, Diploma in Digital Video.
• 2011, Refresher course in Experimental Illustration.
• 2011, Master of Design and Visual Communication at the Posgrado de Artes y

Diseño, UNAM. with the thesis project “e Illustrated Leer, a Resource for the
Graphic Designer”. I´m a freelance designer, and I’m permanently involved in
leering and illustration, as well in a few music projects :D

Rodrigo Velasco (1988, Mexico City)

studied Graphic Design and explored the interplay between sound and image; currently interested in writing of code-
poetry, he has created yèct a space for germinated ideas; also, is involved in live coding which develops as part of his
current research in the Visual Arts Master at UNAM and ICSRiM, University of Leeds.

http://cargocollective.com/tristeTren


6.4. Flo - Shelly Knotts, Holger Ballweg, Jonas Hummel

Flock (2015) for Live Coders explores flocking mechanisms in network structures as a
means of managing collaboration in a live coding performance. Loosely modelling the
behaviour of bureaucrats in their interactions with self-regulating political systems, the
three performers engage in a live coding election baleground, hoping to win votes from
an artificial population. e more votes a performer wins, the more prominent in the
final mix that performer’s audio will be. Performers will develop their framework code
in rehearsals beforehand, allowing them to form individual musical election strategies,
before making their policy proposals (in musical form) to the artificial population in
performance. e voting mechanism itself is based on Rosen’s work on flocking in bi-
partite decentralized networks (Rosen 2010). In Flock the network is made up of 2 types of node: feature trackers (using
the SCMIR library in SuperCollider); and AI agents (who have preferences and voting rights). e feature tracker nodes
hold information relating to the current feature states of the input audio from the performers (1 node per feature). At
regular intervals during the performance the AI population will ‘vote’ for the audio input which has the closest current
feature set to that of their ideal profile.

Humans and agents alike become ensnared in a chaotic game of cat and mouse as the clarity of whether the human input
to the system is convincing the AI society to flock to their musical proposal, or the humans are rather chasing the various
preferences of the agents to win votes, becomes blurred. e humans can’t predict exactly how agents will react or move
within the network. In order to win votes the humans can aim for mass appeal with relatively neutral proposals or try
to find a radical niche which strongly differentiates them from other performers.

Shelly is a data-musician who performs live-coded and network music internationally, collaborating with computers and
other humans. She has received several commissions and is currently part of Sound and Music’s ‘New Voices’ emerging-
composer development scheme. She is currently studying for a PhD with Nick Collins and Peter Manning at Durham
University. Her research interests lie in the political practices implicit in collaborative network music performance
and designing systems for group improvisation that impose particular (anti)social structures. As well as performing at
numerous Algoraves and Live Coding events, current collaborative projects include network laptop bands BiLE and FLO
(Female Laptop Orchestra), and live coding performance [Sisesta Pealkiri] with Alo Allik. hp://shellyknos.co.uk/

Holger Ballweg is a live coder and programmer living in Newcastle upon Tyne (UK). Aer studying for an M.A. in Musik-
informatik (Music Informatics) at Karlsruhe University of Music (Germany), he is now pursuing a PhD in sonification
with Paul Vickers at Northumbria University. He is a member of the live coding band Benoît and the Mandelbrots, per-
forming over 60 concerts in Germany and Europe. He also performed with the Birmingham Laptop Ensemble (BiLE) and
with Shelly Knos. hp://uiae.de.

Jonas Hummel is a sound engineer, experimental musician and a PhD researcher, at Manchester Metropolitan University,
England. His research interests include collaboration in network music situations, group improvisation with custom-built
interfaces and instruments and the performativity of technological objects in real-time computer music performance. Pre-
vious projects include ensembles of networked radios (Translocal Radiophonic Orchestra) or laptop computers (Power-
Books UnPlugged, Birmingham Laptop Ensemble, Republic111). He also works in documentary film projects as sound
recordist and sound editor/designer.

7. Concert F, Wednesday

7.1. Cult of graa> - Niklas Reppel

‘Cult of graa>’ is an umbrella term for instant composing performances, coded live and
from scratch with the aid of the ‘graa>’ mini-language.

e ‘graa>’ language is a self-developed, Python-based domain specific language for the
rapid creation and manipulation of directed graphs, Markov chains and other stochastic
processes. us, it incorporates non-deterministic elements in its very foundations, and
the challenge for the performer lies in juggling with a bunch of musical objects, each
of which behaves unpredictable to a certain amount, without driing into complete ran-
domness.

While the language lends itself for a variety of musical styles, this particular performance
will explore the juxtapositon of piano sounds and simple synthesized waveforms and is



inspired by the somewhat harsh piano works of Giacinto Scelsi, the player-piano pieces
by Nancarrow, but also the paern-oriented minimalism of composers like Terry Riley.

Niklas Reppel (hp://www.parkellipsen.de), born on November 21, 1983 in Wien an der
Ruhr, Germany, is a programmer and musician and holds a B.Sc. in computer science
from TU Dortmund. He recently le the world of commerical soware development to pursue a master’s degree in
music informatics at the IMWI at HfM Karlsruhe. Formerly rooted in the local improv- and jam-session scene as an
instrumentalist, an interest for improvisative live-coding developed quite naturally. Bored by deterministic music, and
inspired by the industrial/natural soundscapes of his home area, non-determinism gained increasing significance in his
work.

7.2. Improvisation - very long cat (Shawn Mativetsky and David Ogborn)

very long cat are a new network music ensemble combining tabla (Shawn Mativetsky)
and live coding (David Ogborn), rehearsing and performing via the Internet and employ-
ing an eclectic range of techniques and technologies. For the inaugural International
Conference on Live Coding we will improvise a combination of two formats or “gen-
res” that are complementary features of the ensemble’s work: live coding signal graphs
that transform the live sound of the tabla sound (live coding “live electronics”), and live
coding paerns and grooves that provide a rhythmic frame for tabla improvisation.

With very long cat, we are not only bridging physical distances, but are also working to bring together two very differ-
ent musical cultures, and both old and new practices of improvisation and creative music making. Shawn Mativetsky
performs tabla in both traditional and new music contexts. He learned in the tradition of the Benares gharana, which is
renowned for its rich tradition of solo tabla playing, drawing upon centuries old traditions of improvisation. David Og-
born’s live coding practice has been strongly influenced by the live coding community around the Cybernetic Orchestra
(McMaster University) and the greater Toronto and Hamilton area, and aempts to engage as directly as possible with
the “theatre” of code, privileging simple and visible code that is modified quickly. For very long cat, Ogborn performs
with SuperCollider, and especially with the affordances of JitLib.

Exponent of the Benares gharana, and disciple of the legendary Pandit Sharda Sahai, Shawn Mativetsky is a highly sought
aer tabla performer and educator. He is active in the promotion of the tabla and North Indian classical music through
lectures, workshops, and performances across Canada and internationally. Based in Montreal, Shawn teaches tabla and
percussion at McGill University. His solo CD, Payton MacDonald: Works for Tabla, was released in 2007, and Cycles, his
new CD of Canadian compositions for tabla, was released in the fall of 2011. hp://www.shawnmativetsky.com/ David
Ogborn (a.k.a. d0kt0r0) is a hacker, sound artist and improviser. At McMaster University in Hamilton, Canada he directs
the Iive coding Cybernetic Orchestra (hp://soundcloud.com/cyberneticOrchestra) , and teaches audio, code and game de-
sign in the undergraduate Multimedia and graduate New Media and Communication programs. hp://www.d0kt0r0.net

8. Club B, Wednesday

8.1. Shared buffer - Alexandra Cárdenas, Ian Jarvis, Alex McLean, David Ogborn, Eldad Tsabary

Shared Buffer is a series of live coding improvisations by an ensemble of globally dis-
tributed performers (Berlin, Hamilton, Montréal, Toronto and Sheffield), all working
on connected code in shared text editing interfaces. e group uses Tidal, a small live
coding language that represents polyphonic sequences using terse, highly flexible and
polyphonic notation, providing a range of higher order transformations.

e performers in the group are connected via the extramuros soware for Internet-
mediated sharing and collaboration, which was originally developed for this ongoing
project. e performance is part of a series of such performances supported by the
research project “Live Coding and the Challenges of Digital Society” (McMaster University Arts Research Board).

With the extramuros soware, a server is run at some generally reachable location on the Internet. Performers use
conventional web browsers to interact in real-time with shared text buffers provided by the server. When code evaluation
is triggered in the browser window, the code in question is delivered to any number of listening clients typically at all
independent locations where the performance is taking place. Independent soware applications render the performance
from the code at each performance site.

https://www.facebook.com/veryLongCat?ref=hl
https://github.com/d0kt0r0/extramuros


Alexandra Cárdenas is a Columbian composer and improviser, currently pursuing a Masters degree in Sound Studies at
the University of the Arts in Berlin. Her work focuses on experimentation using live electronics, improvisation, creation
of controllers and interfaces and live coding.

Ian Jarvis (a.k.a. frAncIs) is a sound artist, producer, and researcher from Toronto. His work is motivated by the impli-
cations of digital technology for creative and scholarly practices with a particular focus on live coding and the digital
humanities.

Alex McLean is Research Fellow and Deputy Director of ICSRiM in the School of Music, University of Leeds, and co-
founder of Algorave, TOPLAP, the AHRC Live Coding Research Network, and ChordPunch recordings.

David Ogborn (a.k.a. d0kt0r0) is a hacker, sound artist and improviser. At McMaster University in Hamilton, Canada he
directs the live coding Cybernetic Orchestra (hp://soundcloud.com/cyberneticOrchestra), and teaches audio, code and
game design in the undergraduate Multimedia and graduate New Media and Communications programs.

Eldad Tsabary is a professor of electroacoustics at Concordia University, founder of the Concordia Laptop Orchestra
(CLOrk), and current president of Canadian Electroacoustic Community—Canada’s national electroacoustic organization.

8.2. Cyril vs Microscopadelica - Darren Mothersele

A participatory live experiment in combining user-generated textures with live coded
3D visuals.

e aim of this installation is to bring participatory elements into a live coding perfor-
mance. e live coder co-creates the performance with the audience as they aempt to
respond appropriately to the input generated by the participants.

Cyril is designed for fast prototyping of visualisations and live coding of reactive visuals.
It was created (accidentally) by Darren Mothersele, a creative technologist from London,
UK. hp://darrenmothersele.com

8.3. Unorganised Music - Calum Gunn

Unorganised Music is a monolithic moiré paern of rave-inflected, ever-shiing drums,
stabs and sirens. A paranoid journey into the dark corners of the dancefloor.

Using a custom-built SuperCollider patch, two streams of sound are used to curate un-
natural paerns on the fly, jumping between bass-heavy rhythms and hoover tunnels at
will.

Calum Gunn is a Scoish programmer and musician living in London.

8.4. Tlaxcalte - ~ON [Emilio Ocelotl + Luis Navarro]

Tlaxcaltech is an exploration of dance music and controlled improvisation through the
use of SuperCollider from a mexican perspective.

~ ON

Duo formed in 2012 by Luis Navarro and Emilio Ocelotl. It focuses on audiovisual
creation from programming languages   and human-machine interaction, mainly using
Fluxus and SuperCollider.

~ ON has performed at various events such as the International Symposium of Music and
Code /Vivo/ (Mexico, 2012), the audiovisual concerts series Source (Mexico , 2013) , La
Escucha Errante: research meetings , and electroacoustic sound creation (Bilbao, Spain
2014), Databit Festival (Arles, France, 2014 ) and at the Bern (Bern, Switzerland, 2014 ).
In 2015 ~ ON organized the Permanent Seminar of the Algorithmic Party “Reggaetron”.

Emilio Ocelotl: Sociologist and violist. He has taken courses in the area of computer
music and composition at the Multimedia Center of the National Arts Center and the
Mexican Center for Music and Sonic Arts. In 2013 he awarded a scholarship to support
Young Composers in the Area of the Mexican Center for Electroacoustic Music and Sonic

http://cyrilcode.com
http://www.calumgunn.com


Arts. His work has been presented at the Museum of Contemporary Art UNAM under the International Symposium on
Music and Code / * vivo* / in the Multimedia Center of the National Arts Centre; his pieces has been presented at the
International Cervantes Festival (2013) in the framework of the International Forum of New Music “Manuel Enriquez”
(2014). hps://soundcloud.com/emilio-oc

Luis Navarro: he studied music composition and Performance in contemporary popular music at the Academy of
Music Fermaa in Mexico City (2005-2011). In 2012 he collaborated in the creation of the International Symposium
of Music and Code /VIVO/ and lectured on the subject of “live programming” in places like the Campus Party
Mexico (2011). His work, that includes image and sound, has been presented at the Multimedia Media Centre of
the National Centre of Arts and at the universities UAM (2013), UNAM (2011) and University of Chapingo (2010).
hps://sites.google.com/site/luisnavarrodelangel

8.5. Linalab - Linalab

live coding – live patching

e laptop won’t produce sound by itself, it will be sending control signals to analogic
modular synthesizer

Lina Bautista, musician and sound artist, she was born in Bogotá, Colombia. She is
currently living and working in Barcelona, Spain.� Her work is divided in two differ-
ent ways: music and live performances and soundscapes, exhibitions and other sound
projects. As a musician she has participated in: Sirga Festival, Cau d’Orella, TEI inter-
national congress, Live.Coding.Festival, LEM, Euònic and Sonar. �She currently works
with e Orquesta del caos, research project about sound art and experimental music,
and host of the Zeppelin Festival. She is member of Sons de Barcelona, a collaborative
group that work in fostering the interest in sound and technologies, and she also makes
DIY workshops with Familiar.

8.6. LifeCoding - Andrew Sorensen

With over ten years of live-coding practice, Andrew is an old-hand at the live-coding
game. As an institutionally trained musician, Andrew’s performances place a strong
emphasis on what he loosely describes as “musicianship”. As part of his exploration into
“musicianship” in live-coding Andrew has explored a diversity of musical styles. is
diversity of styles is reflected in his performances, which oen exhibit a bias towards
western music theory, but are less clearly delineated by any particular genre. Andrew
aempts to make his performances “understandable”, even to those unfamiliar with his
environment, by focusing on simple imperative algorithms built from scratch during
the performance. Andrew performs using his own Extempore programming language -
a general purpose language with a focus on high-performance computing and real-time
systems. Extempore is a research programming language designed to explore notions of
physicality and liveness in a diversity of cyber-physical domains, from sound and music
through to plasma-physics and astronomy.

Andrew Sorensen is an artist-programmer whose interests lie at the intersection of computer science and creative practice.
Andrew is well known for creating the programming languages that he uses in live performance to generate improvised
audiovisual theatre. He has been invited to perform these contemporary audiovisual improvisations all around the world.
Andrew is the author of the Impromptu and Extempore programming language environments

8.7. Gibberings and Mutterings - Charlie Roberts

Gibberings and Muerings will be performed using Gibber, a live-coding environment
for the browser created by the performer. One of the goals of the performance is to
expose aspects of state and algorithmic processes to the audience; to support this we
have added a number of novel visual annotations to Gibber.

ese annotations primarily focus on revealing both the timing and output of sequencers
controlling audiovisual properties. We additionally show algorithmic manipulations of

http://linalab.com
http://extempore.moso.com.au
https://vimeo.com/120459727


musical paerns over time and enable font characteristics to display continuous audio
properties.

e piece is composed at the macro-level, but provides for a variety of micro-level vari-
ations and improvisations.

Charlie Roberts explores human-centered computing in the context of creative coding. He is the author of Gibber, a
browser-based live-coding environment, and a variety of open-source soware packages augmenting end-user interac-
tion. He is currently a Robert W. Deutsch Postdoctoral fellow with the AlloSphere Research Group at the University of
California, Santa Barbara; in the fall he will join the Rochester Institute of Technology as an Assistant Professor of New
Media.

8.8. Heuristic ALgorithmic Interactive Controllers - H.AL.I.C

H.Al.I.C. is a live-coding duo searching for an interactive combination of audio and im-
age generation to create music and visuals in real-time, originating from the same data.
H.Al.I.C. is using Clojure, a dynamic programming language that targets the Java Virtual
Machine. Both audio and visuals are using open source environments : Overtone and
il. All sound of the music , generated by a laptop in this performance, is synthesized
in Supercollider using Overtone, without the use of any samples, only synthesizers are
involved. e visuals are generated in il, combining Clojure with Processing. e
data used to generate graphics will be send to the synthesizers through a bi-directional communication pipeline to ma-
nipulate the sound, and at the same time, modulation data of the synthesizers can be send to provide parameters to
generate images. In addition , Sondervan’s DIY electronic drum-kit will be used to interact with the coded autonomic
composing and improvisation tool, making use of Axoloti, an open source, digital audio platform for makers.

Dagobert Sondervan is a schooled jazz-drummer who started to work as a professional musician in 1987, still in his
teens, and used computers to generate music sinds 1990. He started programming while writing algorithms in Symbolic
Composer on the Atari platform. Also he has produced records with the results using the alter-egos Anton Price and
Bohrbug. As Dj Dago he introduced Jungle and Drum & Bass in the Belgian club scene as resident DJ of the famous
Belgian club FUSE. He has his own jazz and electronic bands as a leader, and works as a session musician for many bands
and projects. Dago is co-organiser of λ-sonic, Belgium’s first algorave festival.

Kasper Jordaens is schooled as an engineer-architect and has been approaching problems using technology and aesthetics.
For a while he’s been doing visuals for DJs while also exploring data visualisation. Aer building custom controllers
(both hardware and soware) to act closer to the music the next step was livecoding, to try and visualise music on the
fly. Kasper is co-organiser of λ-sonic, Belgium’s first algorave festival.

8.9. humanly-organized sound - Kindohm

In this performance I will use Tidal to create algorithmic and broken electronic music,
influenced by and fusing classic styles such as Drum & Bass, breakcore, glitch, dub, and
minimal industrial. I will use Tidal to control MIDI synthesizers as well as to create
paerns from original samples. e performance will demonstrate a balance between
pure improvisation and composed, recognizable, repeatable motifs.

Mike Hodnick (a.k.a. Kindohm) is an independent programmer and sound artist from
Minneapolis, USA. In 2014 he produced the 365TidalPaerns project, regularly per-
formed live-coded music sets, released “I Am a Computer” on Xylem records - an al-
bum produced exclusively with Tidal, and received the Minnesota Emerging Composer
Award from the American Composer’s Forum. Mike continues to perform regularly and
produce music with code.

8.10. Improvisation - Reni Bell

is performance differs from my performances prior to 2015 in that additional agent
processes which change system parameters (conductor agents) run alongside sample-
playing agent processes (instrumentalist agents). ese conductor agents are the result
of my recent research into how autonomous processes can complement live coding ac-
tivity. ese conductors stop and start instrumentalists, as well as change the other

http://www.halic.be
http://www.kindohm.com
http://www.renickbell.net/doku.php?id=150715


parameters used by the instrumentalists for sample-triggering, such as which sample to
play and which rhythm paern to follow. e live coding involves not only the paerns
for rhythms and samples but also the algorithms which the conductors use during the
performance.

By manipulating both instrumentalist and conductor agents, a rapidly changing stream
of algorithmic bass, percussion, noise, and tones is improvised according to a rough
sketch of the overall performance structure. is improvisation crosses the boundaries
of bass music, noise, and free improvisation.

I use my own Haskell library for live coding, Conductive. e sample player was built
with hsc3, a Haskell client for SuperCollider by Rohan Drape. Interaction with the system takes place in a combination
of the Glasgow Haskell Compiler Interpreter (ghci), the vim text editor, the xmonad window manager, and the tmux
terminal multiplexer.

Renick Bell is a musician, programmer, and teacher based in Tokyo, Japan. He is researching live coding, improvisation,
and algorithmic composition. He is the author of Conductive, a library for live coding in the Haskell programming
language. He has a PhD in art from Tama Art University in Tokyo, Japan, a masters in music technology from Indiana
University, and a bachelors in electronic music, art, and philosophy from Texas Tech University. He has performed across
Asia and Europe and in Australia and the United States. ough from West Texas, he has lived in Tokyo since 2006 and
Asia since 2001.





Workshop abstracts

1. Extramuros: collaborative live coding and distributed JavaScript visualizations

• David Ogborn, McMaster University
• Eldad Tsabary, Concordia University
• Ian Jarvis, McMaster University
• Alexandra Cárdenas, University of the Arts in Berlin

e extramuros soware was developed to explore live coding and network music, bringing live coding musicians to-
gether around shared, text buffers. A half-day workshop at ICLC 2015 around extramuros will be divided into two sec-
tions. e first half of the workshop introduces the soware and leads to a collective jam session in the Tidal language.
e second half of the workshop is a hack-in around new possibilities for distributed, live-coded JavaScript visualizations
of collective live coding activity.

1.1. Details

extramuros was developed to explore live coding and network music, bringing live coding musicians together around
shared text buffers. In it’s basic operation, a server is run on one computer. Some number of performers use a web
browser to connect to the server and edit shared buffers of text code, with each person’s editing visible to the others.
At any computer where the sounding result of the code is desired (for example, the individual machines in a globally
distributed ensemble), a client application is run that receives evaluated text from the server and pipes it to the audio
programming language of choice. e soware is released on an ongoing basis through github.com with a GPL version
3 license.

At ICLC 2015, we will conduct a half-day workshop around the extramuros soware. In the first part, we will introduce
the soware, assist with troubleshooting, and perform a networked jam session in the Tidal language. In the second
part, we will have a “hack-in” on new distributed visualization facilities. ese will allow Open Sound Control messages
to the server to arrive back in the connected web browsers as calls to a JavaScript stub function, which could be used
to give feedback about syntax errors, other aspects of system state (such as audio levels), or more sophisticated forms
of visualization of live coding activity. e intent for the hack-in is to collectively produce some strong examples of
JavaScript visualization of live coding activity, which could potentially be incorporated into the extramuros codebase as
examples for further development.

Participants are invited to bring their own laptops with WiFi. No soware installation is required as everything to be
done in the workshop can be done through a web browser. Previous exposure to Tidal and/or JavaScript, while beneficial,
is not required and we will demonstrate basic strategies applicable to both halves of the workshop.

Soware: [hps://github.com/d0kt0r0/extramuros]
Example of extramuros in action: [hps://www.youtube.com/watch?v=zLR02FQDqOM]

2. Live Coding the OpenGL Fragment Shader with Audio Responsiveness

• Shawn Lawson, Rensselaer Polytechnic Institute

2.1. Purpose

e intent of this workshop is to create a larger community of graphics-based live coders and introduce a performance
IDE, e Force. e Force is open source, https://github.com/shawnlawson/The_Force ; run it here, http://shawnlawson.
github.io/The_Force/.

https://github.com/shawnlawson/The_Force
http://shawnlawson.github.io/The_Force/
http://shawnlawson.github.io/The_Force/


2.2. Curriculum

All portions are hands-on, total length is approximately 3 hours. Additional detailed material can easily be included
should 4 hours be expected. For self-starters, the IDE has Open Sound Control communication, should anyone which to
connect to external applications.

• 15 min - Introductions and geing everyone up and running
• 10 min - Explanation of the tool, how it’s constructed, and how it works: lecture/demonstration
• 25 min - Some basic functionalities of the OpenGL Fragment Shader: color, texture, uniforms, coordinate spaces
• 10 min - Break/breather
• 50 min - Some simple coding examples: basic math, shapes, lines, paerns, animation
• 10 min - Break/breather
• 60 min - Integrate audio source with some examples, go live coding crazy: audio input, OSC for the adventurous

3. Opusmodus: Live Coding and Music Composition Environment Workshop

• Stephane Boussuge, Composer, Sound-designer, Associate Composer at Opusmodus Ltd.

“Composing music today is a fascinating business. As the technology gets more complex, I feel more like a computer
programmer than a musician. But I take the sounds in my head and in the world around me and bend the technology
into the world I want to create.” - Robert Rich

Algorithmic soware is revolutionizing creative disciplines. 3D design, film animation and CGI effects, textiles, ceramics,
fine art practice… We are now also seeing extraordinary inventions in signature buildings that have been designed by
applying parametric soware (Rhino and Grasshopper).

3.1. Why Opusmodus?

Opusmodus soware operates by the same principles. Opusmodus is a new Live Coding and Music Composition envi-
ronment with hundreds of functions generating and processing musical events combined with features enabling also an
output in the form of a score notation.

With design factor points to realize and render thoughts and ideas in standard staff notation, Opusmodus is particularly
appropriate for creatingmusic for human performance combining instruments and voices. Let’s not assume that it cannot
be useful in other areas of music, but we have realized that there is a gap in the production of concert and media music
(including games) that Opusmodus can fill effectively.

At the heart of Opusmodus is OMN (Opus Modus Notation), a special notation describing every possible score notation
output as a script. e multiple functions in Opusmodus can generate and manipulate OMN notation, for Live Coding
or Music Score composition, giving a very elegant, powerful and innovative way to compose music.

is workshop will introduce you to the Opusmodus Environment and teach the basics of this powerful music creation
soware.

3.2. What are you going to get from this workshop?

1. New possibility for music composition exploration and experimentation
2. New toolbox understanding with hundreds of tools
3. Access to the Opusmodus user’s community
4. Good knowledge of score generation and creation with Opusmodus tools
5. Global view of all the soware features: 5.1 Fast score generation 5.2 Export to MusicXml 5.3 Midi import capa-

bilities 5.4 Powerful music description language

3.3. What are the requirements?

A computer, a desire to learn, a willingness to share your passion for music composition with your peers around a truly
innovative composition tool designed to leverage your creativity!



3.4. Opusmodus Workshop or how you can embrace your creativity with a powerful user centric tool
designed by composers for composers!

e workshop will start with the presentation of the Opusmodus environment…

How the composer will use the Opusmodus interface with its many features will always be related to her/his experience
and personal choice. But one of the objectives around the design of Opusmodus is to respond to the various approaches
composers have to make in particular projects under certain circumstances.

No creative task is ever quite the same, so it would be foolish to expect one workspace design to ‘catch all’ desires.
Nevertheless, the Opusmodus interface is multi-faceted and has already proved it can deal with very exacting musical
situations from the highly conceptual and experimental to the pragmatic needs of a commissioned work.

… followed by a presentation of Opus Modus Notation key features,

As music notation moves inextricably from printed pages to backlit digital displays, OMN language fully responds to
the future of music presentation. With computers replacing pianos as a composer’s helpmate, so have the conditions
changed surrounding music creation.

New music technology has focused largely on production and presentation, whereas the conceptualisation and origina-
tion of new music requires a very different paradigm. Opusmodus takes a step towards that paradigm, being a 3rd way
forward and driven by its own notation script OMN.

Working directly in OMN is perfect for those ‘on the fly’ experiments (test and learn!) that all composers make when
they are starting out on a project.

It is almost like having a piano close by to lay down new creative thoughts, but with one that always plays what’s wrien
quite flawlessly and captures your creativity at a particular time, anywhere, everywhere.

… with a review of some typical approa to music composition using Opusmodus toolbox key features (System Functions)

With such a powerful application, there are just so many things that are not just useful but necessary. You need to dive
into it. But the advantage of a digital workspace for a composer is that it can bring together in a single location many,
different, and essential things we need to make ever lasting music creation. We will this opportunity to study some of
the System Functions that form the vocabulary of the scripting language of Opusmodus… in just a few hours!

… and finally improvise together with Opusmodus showing the features of the “Live Coding Instrument” (LCI):

e LCI gives the composer an intuitive control panel and the possibility of working in true live coding style directly
with the script. In practice composers who use the Live Coding Instrument oen begin with a script, making a change,
then ‘playing’ that change from the buons of the LCI control panel. Where it becomes a true composer’s instrument is
in its “Save” buon. Yes the “save buon”. is function captures to midi-file every nuance of a ‘live’ session . . . and
from midi-file, via the Export menu, to OMN script and from there, well let’s say there is no frontier between technology
and creativity.

4. Live Coding with Utopia

• Birmingham Ensemble for Electroacoustic Research

is workshop will introduce participants to networked live coding in SuperCollider using the Utopia library
([hps://github.com/muellmusik/Utopia]). Utopia is a modular library for the creation of networked music applications,
and builds upon the work of the Republicark and other older network systems in SuperCollider. It aims to be modular
(features available largely ‘à la carte’), secure (provides methods for authentication and encryption), and flexible (to the
extent possible, it tries not to impose a particular design or architecture). It provides functionality for synchronisation,
communication, code sharing, and data sharing.

For the last two years, the Birmingham Ensemble for Electroacoustic Research has used Utopia as the primary platform
for its activities, and actively developed it in workshops, rehearsals, and concerts. In these sessions, members of BEER
will introduce participants to the library and its possibilities for live coding, with a particular emphasis on creating
networked structures for live coded improvisation.



5. Livecoding relations between body movement and sound

• Marije Baalman, nescivi

Workshop on livecoding relationships between body movement and sound. Using wireless sensors that capture move-
ment of the body and a data sharing network, the participants will engage in collaboratively create mappings of sensor
data to sonic or other media output.

5.1. Description

As (wireless) sensor interfaces become more and more available and accessible to artists, the creation of the the relation-
ships between the data the sensors produce and the output in media has become more and more a subject of research.
Rather than fixed relationships or mappings between sensor data and output media, livecoding can create a dialog be-
tween all the performers in an interactive performance, between the movement and the code, between the movers and
the coders. Even in preparation of interactive performances, livecoding as a skill is very valuable in order to be able to
quickly prototype different approaches of mapping data, try them out, and evaluate their artistic quality. e adaptations
can range from changing of parameter ranges, to rewriting the algorithms that establish rules for mapping. As a mode of
performance, this approach can enable a new form of improvisation, creating a dialog between dancers and livecoders,
as the dancers adapt their movements based on the mappings to output media that are created by the livecoders, and the
livecoders who adapt their code based on the movement of the dancers.

During the workshop we will collaboratively explore the livecoding of such mappings, using a wireless sensor system
(the Sense/Stage MiniBee ; [hps://docs.sensestage.eu]), equipped with accelerometers and a selected range of other
body-based sensors, and a data sharing network ([hps://github.com/sensestage/xosc]).

e workshop will start with an exploration of the framework within which we will work, before going on to exploring
body movements, the sensor data this produces and strategies for mapping this data to output media - mainly sound.
While examples of algorithmswill be given in SuperCollider, for the experienced livecoder they should be easy to translate
into his or her preferred programming language, as long as a quick access to incoming OSC data is available. e
workshop should end with a collaborative livecoding and movement session of all participants.

5.2. Participant requirements

• A laptop with the livecoding programming language that you are familiar with.
• e livecoding programming language should be capable of receiving (and sending) custom OSC messages.
• e laptop should have WiFi capabilities (or you should bring an ethernet cable).
• Participants with a background in movement (dance, theatre, etc) are also welcome - even if they may not be

livecoders themselves, but are interested in the collaboration with livecoders.

6. Slow coding, slow doing, slow listening, slow performance

• Hester Reeve, Sheffield Hallam University
• Tom Hall, Anglia Ruskin University

6.1. Overview

Explorations of slowness over the last generation have ranged from the ‘slow food’ movement, ‘slow scholar-
ship’ and ‘slow technology’ in design practice (Hallnäs and Redström 2001), to recent academic work on aes-
thetic slowness (Koepnick 2014) and in popular culture, the emergence of ‘slow television’ (BBC Four Goes Slow,
[hp://www.bbc.co.uk/programmes/p02q34z8]). Whilst speed has been an ubiquitous trope surrounding cultures of the
technological, in this workshop we focus on the implications of different notions and approaches to slowness in relation
to the body (hearing, seeing, performing), sound and composition (composition of code, music, writing or a mixture of
all three).

is workshop is open to coders/performers and writers/theorists alike. Our objective is to allow participants to experi-
ence and understand the aesthetic value of altering the timescale of live coding and live performance, and to consider the



wider social and theoretical meanings of doing so. We consider this workshop to be an experimental laboratory rather
than a masterclass.

What to expect: firstly, through simple workshop situations, we will facilitate participants to experience the ‘texture
of the present’ via a series of slow activities aimed at the senses. Secondly, through participants’ own work, we will
provide a framework for participants to consider and experiment with how insights gained from the above might open
up potentials for their own practice of composition (and therefore for the experience of their audience or readership).
ere will be an opportunity for an open group discussion of issues and discoveries that have arisen at the end of the
session.

Some of the questions that have informed the content of our workshops are:

• How does timescale adjust the meaning and experience of a work? Can we meaningfully distinguish between
aesthetic and purely temporal slowness?

• How can slowness be used as a non-oppositional force of the contemporary?
• ‘To slow code, is to know code’? (Hall 2007)
• What might a mindful experience of the electronic feel like?
• To what extent does subjectivity–authorship control code and under what circumstances does it collaborate with

code to let in creative ‘unknowns’?

We ask participants to bring a current piece of work in process with them to the workshop (and a laptop if a coder, an
instrument if a musician and writing means if a writer).

6.2. Workshop leaders

Hester Reeve has been working with time based live art performance for over 20 years. Many of her solo works
are over 4 hours long, sometimes spread over a period of days. In 2012 Reeve devised the AHRC-funded
“Live Notation – Extending Maers of Performance” with live coder Alex McLean ([hp://blog.livenotation.org]).
[hp://www.shu.ac.uk/research/c3ri/people/hester-reeve]

Composer, performer and musicologist Tom Hall coined the music-related meaning of the term ‘slow code’ in a 2007
manifesto (Hall, 2007) and has a decade’s worth of experience teaching and performing using SuperCollider. Recent
compositional work uses traditional instruments with electronics whilst embracing notions of aesthetic slowness.
[hp://www.ludions.com]
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